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to operate with an interconnect that is based on the waveguide-grating 
array router. 

In this paper, we present what we believe to be the first experimental 
demonstration of a multinode WDM multihop packet network inter- 
connected with an arrayed-waveguide router. Each node has the full 
functionality to route packets with subcarrier multiplexed headers and 
perform fast wavelength translation between four wavelengths and space 
switching between a local host and an 8 X 8 waveguide-grating array 
router. Packets consist of a 3050 bit payload at 2.5 Gbps and a 122-bit 
NRZ header at 100 Mbps multiplexed on a 3-GHz subcarrier. Our 
demonstration incorporates several new performance enhancing sub- 
systems, which previous demonstrations lacked. These enhancements 
include fast, uniform wavelength-conversion-switching performed us- 
ing a novel current injection circuit in combination with a four-section 
wavelength tunable GCSR l a ~ e r ~ . ~  yielding wavelength switching times 
under 4 ns for all wavelengths required by the node. Simultaneous 
wavelength conversion of subcarrier multiplexed packet headers and 
baseband payload via cross gain saturation in semiconductor optical 
amplifiers is shown to preserve the header through multiple all-optical 
hops. We have also implemented a different header recovery technique 
on each node: coherent RF heterodyning as in Ref. 1 on one node and 
incoherent RF detection using a fast Schottky barrier diode on the other. 
The second approach simplifies the header recovery subsystem and 
alleviates the need for frequency and phase synchronization of subcarrier 
sources. Additionally, because incoherent detection acts only on the 
prescence or absence of a subcarrier and not on its phase, this scheme is 
indifferent to pattern inversions produced by cross gain saturation-based 
wavelength conversion. 

The multinode experiment consists of a packet transmitter and two 
fully functional space/wavelength routing nodes interconnected by an 
8 X 8 waveguide-grating array router as shown in Fig. 1. The 1556-nm 
packet transmitter generates packets of 1.22-bs duration with a 30-11s 
guard band at each end. 10% ofthe input signal to each node is tapped for 
header detection and recovery. Header recovery at node #I is performed 
by beating the converted signal with a 3.0-GHz LO followed by a low pass 
filter and at node #2 by using a microwave square law detector. An ECL 
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TuR2 Fig. 1. Block diagram of multinode experiment. 
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shown in Fig. 2. Eye diagrams for the recovered header bits are shown in 
Fig. 3. 

In summary, we believe we have demonstrated multihop wave- 
length-routed all-optical packet switching over multiple nodes for the 
first time, The experiment demonstrated space and wavelength switching 
through a waveguide-grating array router. 

This work was supported by an NSF National Young Investigator 
Award number 9457148. 
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TuR2 Fig. 2. (a) Local and remote output of node #1; (b) Input to and output 
from the router due to forwarded packets from node #1; (c) Input to node #2 and 
routed packets from node #2. 

routing processor at node #1 maps the recovered header to one of two 
modulator states (local or remote) and one of four possible wavelengths 
(1538.1 nm, 1552.0 nm, 1561.8 nm, and 1580.9 nm) at the packet rate. 
Node #2 has the same functionality as node #1, except that mapping to 
1544.9 nm and 1548.3 nm is shown for the second hop. 

The four conversion wavelengths are obtained by changing the 
current in the coupler tuning section of a four-section tunable laser. A 
novel pre-distortion pulse-shaping circuit is used to decrease the wave- 
length conversion times and reduce the variance across different source/ 
destination wavelength pairs. The payload and subcarrier multiplexed 
header are converted to the tunable laser wavelength via cross gain 
saturation in a semiconductor optical amplifier. Optical modulators are 
used to gate packets to the local host and to the wavelength-routed 
network. The remote modulator is open only for the duration of a packet 
and is closed otherwise, including those times when no packets are being 
received, in order to prevent unwanted signals from leaking into the 
network. Demonstration of routing through the first and second nodes is 
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TuR2 Fig. 3. Eye diagrams of recovered headers at node #1 and node #2. 
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An optical cross-connect (OXC) architecture was proposed* to imple- 
ment high-capacity transparent wavelength-division multiplexing 
(WDM) optical transport networks. Alaboratory demonstrator was built 
to assess the feasibility of this concept.’ We report here a penalty-free 
cascade experiment of three 4 X 4, eight-channel OXCs operated at 2.5 
Gbitls including WDM transmission over 1001-km nondispersion- 
shifted fiber. 

The experimental setup is described in Fig. 1. The OXC includes 
three major switching stages: (1) a multiwavelength space-switching 
stage, based on clamped-gain semiconductor optical amplifier gates,3 (2) 
a tunable wavelength selection stage, based on commercial Fabry-Perot 
filters under loop control, and (3) an all-optical wavelength conversion 
stage, using carrier depletion techniques in semiconductor optical am- 
plifiers (SOAs). Two of the converters are based on cross-gain modula- 
tion effect (XGM), while the third one is a new Mach-Zehnder Inter- 
ferometer converter (MZI-WC) based on cross-phase modulation? 

In addition, a single-pump double-stage fluoride fiber amplifier is 
inserted on both sides of the optical filter, to adjust the input optical 
power to the MZI-WC, and also to cancel wavelength- and path-related 
power fluctuations before or in the first stages of the OXC. 

Three paths through the OXC are fully equipped, in addition to 
local add-drop ports. The losses are representative of a 4 X 4 eight- 
wavelength node. One of the output ports is looped back to one of the 


