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Abstract

InP Photonic Integrated Circuits Incorporating Photonic

Crystals

Marcelo I. Davanço

Photonic crystals are materials with a periodic and usually very strong index

modulation offering crystal-like propagation characteristics for electromagnetic

waves. These structures have for many years attracted much attention in the

integrated photonics community, offering exciting prospects for the realization of

extremely compact photonic devices and circuits.

The work presented is an investigation on possible applications of quasi-2D

photonic crystals in InP-based monolithic photonic integrated circuits for opti-

cal communications, with focus on stop-band formation and slow and dispersive

waveguide propagation. Initially, a theoretical assessment of band-edge propaga-

tion in line-defect photonic crystal waveguides is carried out based on calculated

photonic band structures, numerical simulations and simplified analytical models.

Capabilities and limitations of the line-defect waveguide filtering characteristics

are discussed in detail.

The subsequent experimental assessment involved the development of a novel

fabrication process to produce photonic integrated circuits incorporating deeply

etched photonic crystals based on a mature integration platform. The photonic

crystals consisted of lattices of air holes of diameters on the order of a few hun-

dreds of nanometers, etched more than 2.5µm into the semiconductor material.

xii



Devices including both electrically pumped ridge waveguides and photonic crys-

tal structures were fabricated and used for the characterization of the photonic

crystal filter characteristics, including phase information. Both the fabrication

technique and experimental characterization technique are explained.

Experimental results are presented demonstrating the availability of 20dB-

extinction transmission stop-bands with bandwidths of tens of nanometers in

structures of less than 80µm in length. Finally, results showing slow and ex-

tremely dispersive band-edge propagation are presented.
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Chapter 1

Introduction

1.1 Photonic Crystals

Since the introduction in 1987 of the concept of Photonic Band-Gaps (PBG)

as a means to inhibit spontaneous emission [1], the number of publications per

year on the topic of photonic crystal materials has increased exponentially 1. This

enormous interest was fuelled along the years by the prediction of many very

exciting properties and possibilities related to electromagnetic wave propagation

and confinement: complete wave confinement for waveguiding and resonators [2,

3]; extreme feature-size reduction for dense photonic integration [4, 5]; enhanced

nonlinearities [6, 7]; highly refractive propagation [8, 9]; anomalous propagation

leading to effective ’negative-refractive-index’ propagation [10, 11]; etc.

The applicability of many such properties in real-life devices, however, is in

general not straightforward; several times, simpler, better-understood structures

and techniques prove to be just as effective for particular applications, offering

1In fact, according to the regularly updated online photonic band-gap reference list compiled
by J. P. Dowling at the Louisiana State University ( http://phys.lsu.edu/∼jdowling/pbgbib.html
), the number of publications per year can be quite well fitted with the expression Npub. =
6 · exp[(Y − 1987)/3], Y being the year since 1987.
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thus a clear advantage over Photonic Crystal (PC) alternatives, regarding sim-

plicity of implementation and design. One good example is the realization of

closed waveguides with confinement provided by the PBG, which in simulations

allows the realization of extremely low-loss sharp bends [12], envisaging extremely

compact photonic circuits [2]. As it turns out, similar performances have been

predicted for high-index-contrast waveguides [13]; experimentally, these have in

fact outperformed equivalent PC waveguides in terms of losses [14]. The search

for sensible photonic crystal applications thus is by itself a rather hard challenge.

The purpose of the present work was the development of novel PC-based ap-

plications for InP Photonic Integrated Circuits (PICs) [15]. Rather than aiming

towards the realization of entirely PC-based circuits, the present approach con-

sisted in incorporating PC structures to small portions of a standard PIC with

the purpose of adding functionality and reducing overall circuit dimensions, while

maintaining low overall losses by minimizing interaction with lossy PC regions.

The investigation was focused on two promising, unique properties offered by

PC waveguides: the formation of very broad guided-wave stop-bands and slow

and dispersive band-edge propagation, both of which offer good prospects for the

realization of monolithically integrated optical filters. The exploration was biased

towards practical applications, keeping in mind aspects that could be understood

or achieved in a straightforward manner, or those that could not be easily avoided.
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Photonic Integrated Circuits Incorporating Photonic Crystals

Semicondutor PICs are generally composed of a series of planar structures

(waveguides, trenches, mesas, mirrors, etc) realized on the surface of epitaxially

grown wafers. Semiconductor fabrication processes consist in essence of a series

of steps involving deposition and etching of semiconductor, metal or dielectric

materials at selected areas on the wafer surface.

The possibilities of implementation of the different structures of a PIC are

strongly limited by the availability of suited fabrication techniques. In general,

much time, effort and money are involved in the development of a stable fab-

rication process; novel processes as such are developed from stable, previously

available ones, through the introduction of a few compatible steps, making use

of the available fabrication tools and techniques. This was in fact the approach

taken in the present work, which ended up defining the type of PC structure to be

explored: quasi-2D photonic crystals. The following section describes the detail

the most important features of these structures.

1.2 Quasi-2D Photonic Crystals

Many different implementations of PCs have been proposed or demonstrated

in the literature, however, keeping in mind the many issues involved in their incor-

poration within functional planar Photonic Integrated Circuits (PIC), those of the

lattice-of-holes kind are in general chosen given their fabrication simplicity: the

process consists mainly of etching 2D periodic arrays of holes on a semiconduc-
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tor wafer. Crystals thus implemented present periodicity in only two dimensions;

confinement in the remaining direction grants quasi-2D crystal-like wave propaga-

tion on the plane. In general the epitaxial structure forms a slab-waveguide which

provides weak or strong vertical confinement, depending upon the refractive index

discontinuity between the different material layers.

One may separate quasi-2D crystals into two classes, depending on whether the

vertical confinement is weak or strong. Schematics of the two kinds of quasi-2D

crystals are depicted in Figs. 1.1(a) and 1.1(b).

(a) (b)

Figure 1.1: (a) Schematic of strong vertical confinement (membrane-type)
lattice-of-holes PC. (b) Schematic of weak vertical confinement (slab-type) lattice-
of-holes PC.

The advantages and disadvantages of each scheme, as well as the current state-

of-the-art are discussed in the following paragraphs.

1.2.1 Strong Vertical Confinement Photonic Crystals

Strong vertical field confinement provided by large vertical index contrasts

allows the existence of actual vertically bound Bloch modes (i.e. Bloch modes

with no intrinsic out-of-crystal-plane losses) in infinite structures, which trans-

lates into lower propagation losses [16]. Theoretical analysis and design become
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more involved in this case, since in general full-vector, three-dimensional field

computations are required for a satisfactory assessment of the crystal properties.

In general, however, the requirement on hole depth is not very demanding, since

crystals are defined on reasonably thin (on the order of a few hundreds of nanome-

ters) semiconductor layers.

Strongly confining PCs have been realized in Silicon and Silicon-on-Insulator

(SOI) material [17, 18, 19], GaAs [20] and InP [21, 22]. Strong confinement in

Si, GaAs and InP systems is achieved with the removal of underlying substrate

material, in which case actual membranes of photonic crystal material are formed,

as shown schematically in Fig. 1.1(a). In the case of SOI and certain types of GaAs

systems, the substrate is kept, however presenting a large index step with respect

to the confinement layer.

The main disadvantage of membrane systems is the extra difficulty involved

in the monolithic integration with PICs, due to the fragility of the fabricated

structures. Notice, though, that this does not pose a fundamental limitation to

the applicability of such structures.

The lowest propagation losses reported so far for line-defect photonic crystal

waveguides have been obtained from strongly guided structures in Si membranes:

0.7dB/mm [14]. These losses were achieved with waveguides with extremely

smooth sidewalls. It must be noted though that extremely compact ( 0.5nm width)

high quality strip waveguides on SOI material have been reported to offer lower

levels of propagation losses (0.35dB/mm) [23]. Moreover, losses per 90◦-bend as

low as 0.013dB were reported, clearly proving the value of such structures. These
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waveguides are advantageous relative to PC guides from the point of view of the

simplicity of fabrication and analysis and are thus in principle more convenient

for the realization of highly integrated waveguide-based photonic circuits. On

the other hand, these do not offer the same dispersive propagation characteristics

found in PC waveguides.

Optically pumped, InP-membrane micro-cavity quasi-2D PC lasers were re-

ported for the first time in InGaAsP material with multiple quantum-wells in [24].

Following that, many membrane-based surface-emitting lasers were demonstrated,

good examples of which are [25, 26, 27]. Electrically-driven membrane InGaAsP

lasers were reported in [28, 29].

The highest micro-cavity quality factor achieved so far was of 600,000, reported

in [19]. The cavity was realized on a Si membrane, designed such that the

cavity mode presented fewer radiative (spatial) spectral components. This allowed

the development of the resonator-based, extremely compact multi-channel drop-

filters reported in [30], which demonstrates the integration potential offered by

membrane-based PC structures.

1.2.2 Weak Vertical Confinement Photonic Crystals

A slab-type lattice-of-holes PC consists of a weakly guided slab waveguide

onto which very deep holes are etched, as schematized in Fig. 1.1(b). Idealized

structures consisting of infinitely deep holes have been predicted to be intrinsically

leaky [31]; reference [31] however predicts radiation losses to scale with the square
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of the slab index-step, (∆ǫ)2, which means lower radiation leakage for weakly

confining structures in leaky-wave propagation regimes 2. This result was obtained

in a perturbative approach with many simplifying assumptions by considering

both the 3D index distribution and PC modes to be separable (i.e., f(x, y, z) =

u(x, z)v(y), y being the direction of holes) and by considering dipole-like radiation

from the effective perturbations introduced in the slab waveguide.

Accurate 3D computational models have later shown good evidence that the

intrinsic radiation losses are not necessarily high and in some cases might even

compare to what is found in strongly confining geometries in leaky propagation

regimes [32, 33].

Etched hole imperfections such as insufficient depth [34, 35, 36, 37], sidewall

verticality [38, 37] and irregular bottom shapes [39, 37] have been pointed out

as main sources of out-of-plane radiation losses in real PCs. This imposes strict

requirements on etching techniques for the realization of low-loss PCs, since typical

aspect-ratios of more than 10 must be achieved, corresponding to etch-depths

beyond 2µm, with very straight sidewalls.

The effects of sidewall roughness on the reflectivity of 1D PCs has been investi-

gated in [40], where a band-gap red-shift and narrowing was theoretically observed

using Finite-Difference Time-Domain simulations. In Ref. [41], low-index-contrast

1D air-trench PCs were related to higher radiation losses caused by sidewall im-

perfections, by considering the latter as radiating dipoles excited by an incident

2Strong-confinement PCs also present unconfined modes in the vertical direction.
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waveguide mode. Higher losses were attributed to a less-effective re-capture of

power radiated by the effective dipoles in weakly guided PCs.

Weakly confining quasi-2D structures reported in the literature are in general

either GaAs- or InP-based. GaAs structures in general provide slightly higher

confinement factors, given the GaAs-AlGaAs index discontinuity. These in general

are used for wavelengths approaching 1µm [42]. The present work is concerned

with InP-based PCs, keeping in mind their application in monolithic photonic

integrated circuits for optical communications wavelengths (λ ≈ 1.5µm).

Deep Hole Etching

High-density plasma etching techniques have yielded the best results in terms

of deep-hole etching. For InP material, Cl2 chemistries are in general used under

low pressures (<10mTorr), high temperatures (>200◦) and high plasma densities.

Electron-Cyclotron Resonance (ECR) Reactive Ion Etching (RIE) has been used

in [43, 44, 45], using a Cl2/Ar gas mixture to produce etch-depths exceeding

3.5µm, .

Chemically assisted Ion Beam Etching (CAIBE) with a Cl2/Ar mixture at a

low pressure has been shown to produce 4.5-µm-deep holes with diameters above

350nm, with very straight sidewalls and tapered bottoms [46]. Estimated losses in

this case were lower than those found in a similar structure etched with ECR [44]

and were related to a lower hole-bottom sidewall angle. This etching technique

was also able to produce 250-nm-diameter, 4.5-5.5µm-deep holes in [47], with

extremely straight sidewalls.
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The Inductively Coupled Plasma (ICP) source technique on the other hand

has been used in [48] with SiCl4 to produce >3.5-µm-deep holes with very straight

sidewalls, which yielded comparable lower losses than the equivalent ECR-etched

PCs of [44]. The better performance was once again accredited to a smaller

tilt angle, as well as larger hole depth. Similar etching conditions also produced

2.8-3.7µm-deep holes with aspect-ratios of 12 and 14 in [49].

In the present work, ICP has been used with a Cl2/Ar mixture at 2.5mTorr and

200◦C to produce > 2-µm-deep holes with similar hole-morphology characteristics

as above. The present technique was on the other hand capable of producing etch-

depths exceeding 3.0µm for≈ 240nm-diameter holes.

Waveguide Losses

In terms of waveguide losses, the lowest reported to date were 1.8dB/mm for

the CAIBE-etched PCs of [47] and 1.5dB/mm for the ECR-etched PCs of [45].

Both estimates were obtained from triangular lattice three-line-defect waveguides

in the Γ-K (W3(K)) direction in slightly different epitaxial wafers. Losses of

0.2dB/mm were also reported in the latter reference, triangular lattice seven-line-

defect waveguide (W7(K)), which has a much wider waveguide channel.

The loss figures above were obtained with relatively thin top InP claddings

(0.6µm in the former 0.2µm in the latter case) and thicker waveguide layers (1.6µm

in the former 0.9µm in the latter case), which seems to point to the fact that larger

confinement factors may lead to lesser interaction with imperfect hole-bottoms and

therefore lesser losses. Reference [50] on the other hand relates higher losses to
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higher confinement factors and points out that proper optimization of the vertical

epi-structure (based on e.g. the analytical expressions obtained in [31, 39, 38]) is

required for loss minimization.

In the present work, the epitaxial structure included waveguide and top clad-

ding layers of 300nm and 1.0µm respectively. This structure was based on an

optimized platform for photonic integrated circuits [51]. The top cladding was

highly p-doped and was topped by an equally highly p-doped InGaAs contact

layer, both features which contribute to increase mode propagation losses. In

addition, etched holes were ≈2.5-µm deep, barely enough to cover the entire slab-

mode profile. Losses obtained for a triangular lattice three-line-defect waveguides

in the Γ-M direction (which has a much narrower channel width than its Γ-K

counterpart) were estimated to be ≈13dB/mm. As proposed in [49], this may be

improved by 1) deeper hole etching and 2) proper epi-structure design.

It must be pointed out that rigorous 3D computational PC models have shown

that losses of single-line-defect waveguides were at least two orders of magnitude

higher in the deeply etched (infinite hole) case than in equivalent strongly confining

PCs [52]. On the other hand, weakly confining waveguides with much wider

channel widths (e.g. >3-line defects) present losses up to three orders of magnitude

lower than their single-line counterparts, reaching in some cases compatible levels

to those found in strongly confining single-line defect waveguides in the non-leaky

regime (i.e. below the air light-line) [33, 52].
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Monolithic Integration with Photonic Integrated Circuits

The main advantage offered by slab-type PCs is the possibility of simpler in-

corporation with standard photonic integrated circuits. Additionally, theoretical

analysis and design are considerably simplified: despite the fact that most modes

of deeply etched PC waveguides are intrinsically leaky, effective 2D PC band-

structures can still approximate quite well those obtained from a full-3D calcula-

tion [53]. Given a complete vertical overlap between slab modes and etched-hole

profiles, it is possible to assume Bloch modes of the quasi-2D crystal to be com-

posed of slab-mode waves propagating in the crystal plane, coupled by the 2D

lattice. As such, an effective band-structure can be obtained considering the back-

ground effective index to be that of the considered slab-mode of the unperturbed

vertical-layer structure. The existence of 2D Bloch modes at specific frequencies

can then be directly correlated to transmission or reflection measurements from

real devices. This procedure has in fact been carried out successfully in various

articles[36, 53, 39, 54]. Notice that 2D waves can be separated into two classes,

TE and TM, respectively having only electric or magnetic field components on

the propagation plane; PC modes are classified accordingly, with respect to the

crystal plane.

Ridge waveguide lasers with PC mirrors were first realized in GaAs, providing

light at λ ≈800µm [55] (here, CAIBE was used to produce 2-3µm-deep holes).

Later, a similar laser was demonstrated in InP at λ ≈1.55µm, however with a

shallow-rib waveguide [56]. In both cases, the laser cavity was very short, on the
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order of 200µm. Power levels exceeding 10mW were reported for currents around

300mA (pulsed) in the first case, with a threshold current close to 100mA. In

the latter case, threshold currents below 20mA were observed, however with a

maximum output powers of 9mW due to device heating.

Tunable coupled-cavity lasers composed exclusively of PC line-defect wave-

guides were demonstrated in [57], demonstrating the good potential for device

size reduction. The two laser cavities in this case were approximately 200µm in

length.

1.3 Description of this Thesis

The first chapter of this thesis includes theoretical and practical considerations

regarding 2D and quasi-2D photonic crystals necessary for the understanding of

the following chapters. The material includes basic theoretical concepts and a

brief description of the method used for band-structure calculation, as well as a

discussion on deep-hole etching.

Chapter 3 covers in depth wave propagation in 2D line-defect waveguides,

with focus on slow and dispersive band-edge propagation. The discussion is done

based on calculated band-structures and Finite-Difference Time-Domain (FDTD)

simulations, as well as in generalized 1D Coupled-Mode Theory (CMT) equations,

which seem to approximate band-edge propagation with reasonable accuracy [42,

54].
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Chapter 4 details the fabrication process used to produce test devices and

deeply etched photonic crystals. The entire process is described initially, then

relevant aspects of the electron-beam lithography and dry-etching techniques are

discussed next.

Chapter 5 explains many aspects of the experimental characterization process,

including the theory and analysis of Müller matrices, extensively used to obtain

the results presented in Chapter 6.

In Chapter 6 experimental measurement results are presented for four different

types of photonic crystal-based structures: one extremely compact grating filter

based on a bulk rectangular lattice crystal; a line-defect waveguide presenting a

mini-stop-band for TM polarization, offering slow and extremely dispersive band-

edge propagation; multi-mode asymmetric line-defect waveguides offering broad-

band stop-bands convenient for the realization of monolithically integrated notch

filters; an extremely compact single-mode line-defect waveguide offering very slow

band-edge propagation.

Finally, general conclusions and suggestions for future work are presented in

Chapter 7.

Main Thesis Contributions

The present investigation yielded the development of a novel fabrication process

for monolithic, InP-based photonic integrated circuits incorporating deeply etched

photonic crystals. The newly developed PIC platform extends the set of struc-

tures available for device design based on the mature platform from whence it was
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derived. Clearly, design flexibility is gained, envisaging the development of novel

functions and reduction of circuit dimensions.

The investigation on slow and dispersive band-edge propagation in PC line-

defect waveguides provides insight into the involved mechanisms and the relevant

parameters for filter design. The investigation in fact is an attempt towards the

description of PC waveguides in terms of specific transfer functions, which is in

general taken for granted in the literature.

Finally, the experimental results presented show good evidence, complemen-

tary to that found in the literature, of the potential of deeply etched photonic

crystal as monolithically integrated filtering elements.
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Chapter 2

Photonic Crystal Background

Theory

2.1 Introduction

In this chapter, basic aspects of Photonic Crystal (PC) theory related to this

thesis investigation are presented. Focus is given only to the relevant information

necessary for the understanding of the material presented in the following chapters.

The more general aspects of the PC topic can be found in a good number of

published books and articles [1, 2, 3, 4].

Photonic Crystal theory is mainly based on the study of Bloch-mode band-

structures, obtained from the solution of the electromagnetic field wave equations

presented in Section 2.2. Propagation can actually be understood from the exis-

tence of Bloch-modes within specific frequency ranges and their dispersive char-

acteristics, which can be assessed through calculation of the Bloch-mode group

velocities.

The band-structures studied in this work were obtained with the MIT Photonic

Bands program [5], which is based on the Plane-Wave Expansion (PWE) method
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described in Section 2.3; Section 3.2.4 shows a glimpse of the correlation between

calculated band structures and PC power transmission.

The structures fabricated and characterized in the present work are quasi-2D,

in the sense that they they present crystal periodicity on a given 2D plane, however

not in the remaining dimension of 3D space. The treatment of such crystals as

effective 2D structures is finally explained in Section 2.5.

2.2 Photonic Crystal Band-Structure

Following the established analogy between electronic wavepackets in periodic

potentials and optical waves in media with periodic refractive index distribution,

wave propagation in PCs can be equally understood from the study of Bloch

modes in infinite crystal structures. In an ab-initio approach [2], one may start

from the time-harmonic Maxwell’s equations in differential form for linear isotropic

dielectric media, considering spatially periodic dielectric constants, and arrive at

the magnetic field vector wave-equation

∇× 1

ǫ
∇× H =

(ω

c

)2

H, (2.1)

which in summary describes the propagation of electromagnetic waves of frequency

ω. In Eq. (2.1), the scalar 1 ǫ describes the PC index distribution. An alternative

1Considering isotropic dielectric media. In general media, ǫ is a tensor that causes coupling
between the different field components. The birefringence of all materials in the present work
is considered to be negligibly small so that ǫ is always considered to be scalar. A more general
treatment can be found in [5].
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formulation for this uses the electric, rather than magnetic field:

1

ǫ
∇×∇× E =

(ω

c

)2

E. (2.2)

In the presented form, Eqs. 2.1 and 2.2 constitute eigenvalue problems concerning

respectively the operators ∇× 1
ǫ
∇× and 1

ǫ
∇×∇×. The former of the two can be

shown to be Hermitian under the standard R
3 inner product and thus is generally

preferred for numerical calculations.

Considering that the translational symmetry of the medium causes the electro-

magnetic field to obey the same lattice periodicity 2, an equivalent electromagnetic-

wave version of Bloch’s theorem may be proved [2, 3], stating that the eigen-

equations above yield eigenfunctions of the form H = Hk(r) ·exp(−ik ·r). Clearly,

eigenvalues are directly related to the wavenumber k.

Notice that since the operator ∇× 1
ǫ
∇× is Hermitian, Eq. 2.1 yields a complete

set of orthogonal Bloch eigenmodes which completely describe wave propagation

in the crystal. This is not true for Eq. 2.1, since the Hamiltonian in this case is

not Hermitian. Alternative electric field formulations on the other hand can be

developed that yield eigenvalue equations with Hermitian operators. [3].

It must be pointed out that the two wave-equations above are scalable. Defin-

ing r′ = f · r, f a scalar, ∇ = f · ∇′, where ∇′ is the gradient with respect to r′.

Taking Eq. 2.1, the following is then valid:

∇× 1

ǫ(r′)
∇× H = f 2 · ∇′ × 1

ǫ(r′)
∇′ × H = Ω2H, (2.3)

2In mathematical terms, H(r − G) = H(r), the same being valid for E, where r is a vector
inside the unit-cell and G is any lattice-translation vector.
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Then

∇′ × 1

ǫ(r′)
∇′ × H = Ω′2H, (2.4)

with Ω′ = f−2 · Ω, which is the same as Eq. 2.1. As such, scaling the dielectric

function simply causes the photonic bands to shift in frequency.

Group Velocity

In periodic structures, the energy velocity of a Bloch wave is numerically equal

to its group velocity [1, 3]: vg = ∇kω. The expression for the group velocity of a

calculated Bloch mode as such can be obtained from the Hellmann-Feynman theo-

rem applied to the eigenvalue equation 2.1 [3]. Consider a normalized eigenvector

|un〉 of the operator Ĥ = ∇× ǫ−1∇× such that

Ĥ |un〉 = ωn · |un〉 . (2.5)

Then, from the Hellmann-Feynman theorem,

∇kω =

〈

un

∣

∣

∣

∣

∣

∂Ĥ

∂k

∣

∣

∣

∣

∣

un

〉

. (2.6)

In general, the operator ∂Ĥ
∂k

can be obtained in a straightforward way from the

Ĥ operator, depending upon the Bloch-mode calculation method used.

Wave Equations in Two Dimensions

Solutions of the wave equation in two dimensions can be separated into two

complementary cases, Tranverse-Electric (TE) and Transverse-Magnetic (TM), in

which respectively electric or magnetic fields have no components in the direction
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normal to the photonic crystal plane 3: consider for instance the crystal plane to

coincide with the xz plane in Real space. Waves with H = Hyŷ are defined as

TE, those with E = Eyŷ as TM. In this case, Eqs. 2.1 and 2.2 can be reduced to

scalar wave equations on the components normal to the crystal plane, which are

considerably simpler to solve:

∇‖ · (p · ∇‖φ) = −q
ω

c

2

φ, (2.7)

Here, ∇‖ is the gradient in x and z, φ = Hy, p = 1/ǫ, q = 1 in the TE case and

φ = Ey, p = 1, q = ǫ in the TM case.

Throughout this work, all studied PC structures are two-dimensional and thus

present Bloch modes of either TE or TM polarization; these in general present

very diverse propagation characteristics. In the following chapters, for each PC

structure investigated, either TE or TM individually or both polarizations are

studied. The choice of which polarization to investigate in each case is based on

what convenient propagation features are offered. In each particular case, the

polarization under study is specified for clarity.

Bloch Modes and Wave Transmission in Finite Systems

Power transmission from finite PC structures can be directly related to the

existence of and power coupling to Bloch modes of the corresponding infinite

crystal structure. Moreover, the Bloch-mode dispersion characteristics are directly

3This is actually a homework problem in many electromagnetic theory textbooks
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related to the propagation characteristics of waves in finite crystals 4. Examples

are given in Section 3.2.4 and in the following Chapters of this thesis.

2.3 The Plane-Wave Expansion Method

The factor involving the periodic dielectric constant ǫ in Eq. 2.1 can be ex-

panded in Fourier series in the following way:

1

ǫ(r)
=

∑

G

κ(G) exp(iG · r), (2.8)

where G are the reciprocal lattice vectors. A Bloch solution of the eigen-equation

for a particular k and band order n is in the form Hkn = ukn(r) · exp(−ik · r),

with ukn(r + G) = ukn(r). This last factor may as well be expanded in Fourier

series to yield the following expression for the Bloch mode:

Hkn =
∑

G

Hkn(G) exp[i(k + G) · r]. (2.9)

Replacing Eqs. 2.8 and 2.9 into Eq. 2.1 and matching exponential terms gives the

following matrix eigenvalue equation:

−
∑

G′

κ(G − G′)(k + G) × {(k + G) × Hkn(G′)} =
(ωkn

c

)2

Hkn(G) (2.10)

This equation can be solved for a desired k-vector, yielding a particular set of

eigenvalues in each case. A large number of plane-waves (i.e., G’ factors) is usually

necessary for a good calculation accuracy, which causes the generated matrices to

become very large. In general, iterative computational methods are used to solve

4A very good article in which the relationship between Bloch-mode phases and transmission
characteristics in finite 1D systems is studied in detail is [6].
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this type of eigenvalue problems. Notice, on the other hand, that Gauss’s law for

the magnetic field in a dielectric non-magnetic medium,

∇ · H = 0, (2.11)

when applied to Eq. 2.9, yields the result that Hkn · (k + G) = 0. By describing

the vector Hkn(G) in terms of two vectors perpendicular to (k + G), Eq. 2.9

becomes a regular eigenvalue problem of rank 2N , with N the number of used

plane-waves [5].

The software used for the band-structures calculation took a plane-wave ba-

sis function bj = exp
(

∑

j mjGj · r
)

, with j = 1, 2, 3 (for 3D space) and mj =

−⌈Nj/2⌉ + 1, ..., ⌊Nj/2⌋, such that the plane-wave expansions of the field and di-

electric constant could be readily identified as Discrete Fourier Transforms (DFTs).

Computation of the matrix multiplication in 2.10 at each iteration thus followed

through the procedure

−(k + G) × FFT−1{ǫ−1(r) · FFT{(k + G′) × Hkn(G)}} (2.12)

With this, any type of dielectric function distribution could be treated in a gen-

eralized (without requiring the analytical expansion of ǫ−1) and efficient way. In

order to improve convergence, however, the dielectric constant ǫ is replaced by an

effective, smooth dielectric constant function. The details of this procedure are

beyond the scope of this work, and can be found in [5].
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2.4 The 2D Lattice-of-holes Photonic Crystal

A two-dimensional PC can be conveniently realized by defining a periodic

array of air holes on a background of refractive index different (and usually much

larger) than 1. This system is advantageous in terms of both the theoretical

analysis, given the scalar nature of its eigen-equations, and fabrication, which in

principle requires not much beyond a good hole-etching process. The crystal-like

propagation characteristics, band-gap included, depend on the lattice itself, on the

background refractive index n, hole radius r and lattice constant a; since these

are 2D systems, propagation can be separated into TE and TM polarizations, as

remarked above.

The relative air volume within one crystal unit cell has a strong influence on

the achievable band-gaps, as the Bloch eigenfrequencies depend on the field dis-

tribution within the cell. The air-filling ratios of course can be varied through the

hole radii, however ultimately the crystal lattice itself determines the maximum

achievable ratio.

Triangular Lattice

Consider a 2D triangular lattice of air holes of radius r on an a background

medium with refractive index n > 1.0 depicted in Fig. 2.1. Its lattice vectors can

be taken to be a1 = (
√

3
2
x̂ + 1

2
ŷ) · a and a2 = (

√
3

2
x̂ − 1

2
ŷ) · a, with corresponding

reciprocal-lattice unit vectors a1 = ( 1√
3
x̂ + ŷ) · 2π

a
and a2 = ( 1√

3
x̂ − ŷ) · 2π

a
.

The first Brillouin zone is hexagonal, aligned with the direct-space crystal lattice
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as depicted in the inset of Fig. 2.1; the irreducible Brillouin zone is highlighted

within, as well as the high-symmetry points Γ, M and K.

Figure 2.1(b) shows the Bloch-mode band-structures for TE and TM polariza-

tions, calculated with the PWE method [5], where the horizontal axis represents

k-vectors on the irreducible Brillouin zone boundary and the vertical axis is the

normalized eigenfrequency a/λ = ω · a/c. High-symmetry points are indicated in

the horizontal axis.

(a) (b)

Figure 2.1: (a) Triangular lattice of air holes photonic crystal and its First
Brillouin zone. (b) TE- and TM-polarization band structures.

An omnidirectional band-gap for TE modes is clearly visible in the diagram,

between a/λ ≈ 0.25 at the K k-point and a/λ ≈ 0.37 at the M point. Notice

that the gap width varies considerably with k-vector. The TM polarization does

not present an omnidirectional band-gap, however a small gap is formed at the

M -point. The largely different band-structures for TE and TM modes can be

understood considering that in the former case the electric field components are

on the crystal plane: in order for the electric-field boundary-conditions to be
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fulfilled between air and semiconductor regions 5, a fast spatial field variation

must be established. In the TM polarization case, the electric field component is

continuous everywhere, since it is always perpendicular to the crystal plane, thus

always parallel to the air-semiconductor interfaces.

The TE band-gap is very broad: considering the mid-gap to be at λ = 1.55µm

(which would require the lattice constant to be a ≈ 0.48µm), the total band-

width would exceed 600nm. This is a desirable characteristic for waveguiding,

envisioning wave confinement provided by the band-gap over broad wavelength

ranges.

Bloch Modes and Wave Transmission in Finite Systems

The incidence of a TE-polarized gaussian beam onto a finite, 10-period PC

with the band-structure shown in Fig. 2.1 was simulated using Finite-Differences

Time-Domain technique [7]. Incidence in both Γ-M and Γ-K directions of the

PC Brillouin Zone were tested, resulting in the transmission amplitude spectra of

Fig. 2.2. The grey regions in the amplitude transmission graphs indicate band-gap

frequencies at the two high-symmetry points considered. A clear correspondence

can be established between transmission stop-bands and the Bloch-modes band-

gaps in each direction.

Fringes on the pass-bands are due to Fabry-Pérot-like resonances in the finite

PC medium, being intrinsically related to the dispersion characteristics of the

Bloch-modes [6].

5The electric field component normal to the boundary surface between two different dielectric
regions is discontinuous across the interface.
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Figure 2.2: Band-structure for the PC in Fig. 2.1 and corresponding field trans-
mission amplitude for incidence in the Γ-M and Γ-K directions of the Brillouin
zone. Grey regions in the transmission graphs correspond to the band-gap in the
corresponding direction.

2.5 Quasi-2D Photonic Crystal Slabs

Figure 2.3: Quasi-2D lattice-of-holes PC.

Deeply etched PCs are three-dimensional structures with intrinsically lossy

wave propagation due to out-of-crystal-plane radiation [2, 8], however effective

two-dimensional crystals have been shown to have very similar Bloch band-struc-
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tures, as shown in [9]. In [9], band-structures of 3D weak-confinement PCs were

compared to those of equivalent 2D crystals, showing a very close agreement.

Moreover, effective 2D Bloch band-structures have been employed in many

instances in the literature (a few good examples are [8, 10, 11]), comparing quite

well with experimental results. The advantages of using effective 2D models are

the considerably lesser computational effort in band-structure calculations and in

computational simulations in general, and the great simplification of the analysis

process. The approximation is realized under the assumption that Bloch modes

are formed by combinations of bound waves of the slab guide onto which the

holes are etched. Good experimental evidence in favor of this assumption has in

fact been reported in [12], where a multi-mode slab was used as the background

crystal-carrying material. Naturally, the band-structure is obtained considering

the background effective index of the unperturbed slab-mode [8, 9, 11].

At the same time, the main reason for out-of-crystal-plane radiation losses has

been identified as insufficient hole depth, which should be enough to overlap with

the full extent of the pertinent modes of the unperturbed slabs [13, 14, 8, 15];

excessive power leakage toward the substrate may happen otherwise. Substrate

leakage could also be linked to coupling between guided and substrate-radiation

slab modes due to the introduction of the holes (from the point of view of per-

turbation theory) which would lead to the inference that hole depth might also

influence the band-structure.

From these considerations, effective 2D models are used to analyze photonic

crystal waveguides in the following sections, and are assumed to be good approx-
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imations to real 3D PC structures with sufficiently deep holes. The experimental

sections of this work in general present very good correlation with results obtained

from these effective 2D models, offering good evidence for the validity of the above

assumption.

Out-of-Crystal-Plane Radiation Losses

Overall, out-of-crystal-plane radiation losses in deeply etched PCs have two

contributions. One is intrinsic, linked to the fact that most Bloch modes of the

PC are not vertically bound. The second is extrinsic, linked to etched hole im-

perfections (insufficient depth, sidewall verticality and irregular bottom shapes).

Reference [16] predicts intrinsic radiation losses to scale with the square of the

slab index-step, (∆ǫ)2, which means lower radiation leakage for weakly confining

structures in leaky-wave propagation regimes. It is important to point out that

accurate 3D simulations have shown evidence that the intrinsic radiation losses

are not necessarily high and in some cases might even compare to what is found

in strongly confining geometries in leaky propagation regimes [17, 18].

Etched hole imperfections such as insufficient depth [13, 14, 8, 15], sidewall

verticality [19, 15] and irregular bottom shapes [11, 15] have on the other hand

been pointed out as the main sources of out-of-plane radiation losses in real PCs.

So far, extrinsic losses reported in the literature were found to be in general one

order of magnitude higher than the intrinsic contribution [11, 20]. The main

extrinsic loss factor is insufficient hole depth; sidewall tilt has also been predicted

to have a very important contribution to radiation losses.
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The following section shows the effect of insufficient hole depth on the reflec-

tivity characteristic of a deeply etched PC.

Hole-etch Depth

The effects of insufficient hole etch-depth on PC reflectivity can be observed

from a simple Finite-Differences Time-Domain simulation of the deeply etched 1D

grating shown in Fig. 2.4(a). This quasi-1D crystal can be designed (by varying

the relative air and dielectric section lenghts LA and LS [21]) to have a band-gap

covering an extremely wide wavelength range. Vertical confinement is provided

by a weak multi-layer slab waveguide with modes that extend considerably within

the top cladding and substrate regions. Figure 2.4(b) in fact shows the overlap

between slab waveguide modes with various top-cladding thicknesses and etched-

trenches of varying depths. The horizontal axis corresponds to the position of the

trench bottom, with the top of the waveguide starting at position 0. In general,

complete overlap is achieved for holes extending about 1µm below the guiding

layer. For 1µm top cladding, this would correspond to a ' 2-µm-deep trench.

The zero-order TE slab-mode reflectivity for a waveguide with Hclad = 2µm is

shown in Fig. 2.5 for different trench depths. The reflectivity is very high within

the band-gap (1.1 . λ/a . 2.3) for infinite trenches. Notice that the reflectiv-

ity changes little for a 2µm trench depth; in this case, the overall out-of-plane

radiation losses are very close to the intrinsic limit for this particular structure.

A dramatic reflectivity reduction is on observed for gratings with insufficiently

deep trenches (htrench < 2.0 in Fig. 2.5). Another important feature are the
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Figure 2.4: (a) Membrane-type lattice-of-holes PC.(b) Slab-type lattice-of-holes
PC.

less-pronounced dips on the right-hand-side of the bandgap as trenches become

shallower. The less efficient destructive wave-interference is in this case due to

the higher out-of-plane radiation losses into the substrate.

Clearly, trenches should be sufficiently deep for radiation losses to be mini-

mized. It must be pointed out however that the presented results consider only

perfectly straight sidewalls. As mentioned above, tilted sidewalls add considerably

to the overall radiation losses. This topic has been treated in more detail in [15].
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Figure 2.5: Simulated reflectivity from gratings of different trench depths.

2.6 Summary and Conclusions

In this chapter, basic aspects of 2D PC theory were studied, necessary for the

understanding of the material that follows.

Quasi-2D slab PCs of the lattice-of-holes type with weak vertical confinement

can in general be analyzed through effective 2D PC models, at least as far as the

Bloch band-structures are concerned. Band structures yield information about ex-

istence and dispersion of Bloch modes within specific frequency ranges, which can

be directly correlated to transmission data from the excitation of finite crystals.

It is important to remember that, given the two-dimensional nature of the

studied PCs, the electromagnetic field can be described in terms of Bloch modes

of two complementary wave polarizations: Transvese-Electric (TE), which has
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no electric field components in the direction perpendicular to the crystal plane;

Transverse-Magnetic (TM), which has no magnetic field components in the direc-

tion normal to the crystal plane. In quasi-2D PCs with weak vertical confinement,

TE and TM Bloch modes are assumed to be formed by combinations of TE and

TM modes of the weak slab waveguide formed by the epitaxial layer structure

respectively. Throughout this work, either polarization or both individually are

studied for each PC structure.

The Plane-Wave Expansion (PWE) method, used to calculate PC band struc-

tures throughout this thesis, was explained briefly. Although many other methods

exist for finding Bloch-type eigenfunctions for the electromagnetic wave equations,

the PWE method offers good accuracy and efficiency; additionally, a software

based on this scheme was readily available for use [5], which allowed for all pre-

sented band structures to be calculated in a straightforward manner.

Out-of-crystal-plane radiation losses, studied in the last section of this chap-

ter, are the main factor limiting the performance of PC structures. Most Bloch

modes of PC slabs with weak vertical confinement are intrinsically lossy. These

losses have however been predicted to be quite low; losses due to imperfections

such as insufficient etch depth, sidewall tilt and conical bottoms on the other hand

are much very significant and in fact have a direct impact on the performance of

PC structures such as waveguides, cavities and mirrors. In summary, holes with

sufficient depth and straight enough sidewalls are required for the minimization

of out-of-plane radiation losses, which ultimately imposes very stringent require-

ments on PC etching techniques.
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Chapter 3

Photonic Crystal Line-Defect

Waveguides

3.1 Introduction

The name line-defect waveguide comes from an analogy to the concept of

electronic defect-modes in solid-state physics. A line-defect waveguide is formed

by suppression of one or more rows of holes of a bulk PC in a given direction,

which creates a defect in the crystalline lattice. The resulting channel is expected

to have propagating modes within the bulk crystal photonic band-gap frequency

range, with lateral confinement provided by the crystal walls. Fig. 3.1(a) shows a

triangular lattice-of-holes crystal and its Brillouin zone; Figures 3.1(b) and 3.1(c)

display two waveguides realized by suppression of three row of holes in the Γ-K

and Γ-M directions of the Brillouin zone. It is important to notice that while

the lattice periodicity is broken in the direction perpendicular to the waveguide,

longitudinal periodicity is maintained. This will cause the coupling of counter-

propagating waves and, consequently, the existence of guided-mode band-gaps in

the waveguide direction. One of the earliest proposed photonic crystal applications
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was the realization of actual closed optical dielectric waveguides for very high

density photonic integration. As opposed to their open counterparts in which

total-internal-reflection provides lateral confinement, PC waveguides would rely

on the crystal band-gap for guiding light, thus preventing radiative power leakage

for all band-gap frequencies, allowing the realization of lossless sharp bends and

compact junctions in general [1, 2, 3]. Recent developments have shown however

that the performance of many such structures can be impaired by out-of-crystal-

plane radiation losses, either intrinsic or caused by fabrication imperfections [4, 5].

At the same time, high-index-contrast strip waveguides[4, 6, 7] have demonstrated

very promising waveguiding characteristics for high-density photonic integration.

On the other hand, photonic crystal waveguides can be designed to offer pho-

tonic band-gaps that can be conveniently used for the realization of extremely

compact integrated optics band-rejection filters. In addition, there is the possibil-

ity of slow and highly dispersive propagation at photonic band-edges, [8, 9, 10, 11],

which can in principle find use in integrated-optics pulse-shaping applications.

This concept has been explored in the past in transmission-mode Fiber Bragg

(a) (b) (c)

Figure 3.1: (a) Triangular lattice-of-holes photonic crystal and its first Brillouin
zone. (b) Three-line defect W3(K) PC waveguide. (b) Three-line defect W3(M)

PC waveguide.
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Gratings (FBG)[12, 13]; the advantages offered by PC waveguides in this context

are the availability of large index discontinuities and strong optical confinement,

which, as discussed below, may lead to the implementation of very compact de-

vices, as well as more flexibility in the design of integrated optical signal-processing

elements.

The following discussion is an attempt to explain the main effects involved in

the applications just described, based on photonic crystal theory.

3.2 Photonic Band-structure Analysis

The propagation characteristics of PC waveguides are generally studied by the

assessment of their calculated Bloch modes. As discussed in Chapter 2, the exis-

tence of Bloch modes and their dispersion characteristics can be directly correlated

to transmission or reflection measurements from finite PCs, the same naturally

being valid for PC waveguides as well. The considerations from Section 2.5 regard-

ing the intrinsic leaky nature of propagation in quasi-2D PCs and the validity of

2D band-structures for the analysis of these structures for are taken into account

in what follows.

3.2.1 Band-structure Calculation

The band-structure calculation for waveguides can be done in a similar fashion

to that of bulk Bloch modes. Starting from the vector harmonic wave-equation

∇× 1

ǫ
∇× H =

(ω

c

)2

H (3.1)

47



in which ǫ describes the PC index distribution, it is possible to find Bloch-type

solutions H = Hk(r) · exp(−ik · r) and their respective eigenfrequencies for par-

ticular k-vectors in the waveguide direction[14]. Solutions of the wave equation

in two dimensions can be separated into two polarizations, TE and TM, in which

respectively electric or magnetic fields have no components in the direction normal

to the crystal plane. In this case, Eq. 3.1 is reduced to a scalar wave equation

on the component normal to the crystal plane (Hy in the TE case, Ey in the TM

case).

In general, the Plane-Wave Expansion method [15] considers periodic refractive

index and field distributions along the two dimensions of the problem. In order to

calculate bound modes of a PC waveguide using this method, one must therefore

consider a calculation super-cell encompassing the defect region plus enough rows

of holes next to it. For a sufficient number of rows of holes between defect regions,

bound modes in the individual defect regions will be isolated from each other and

will correspond to individual, isolated defect-modes. This concept is illustrated

in Fig. 3.2. It is important to notice that, given the intrinsically leaky nature of

certain modes in a deeply-etched PC, 3D super-cell calculations would not work

properly, since it would be impossible to completely isolate modes from their

counterparts in adjacent cells perpendicular to the crystal plane [16].
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Figure 3.2: Supercell used for calculation of the band-structure of a PC line-
defect waveguide.

3.2.2 Band-structure Analysis

Without loss of generality, we next analyze the TE Bloch-mode band-structure

of a 2D three-line-defect waveguide in the Γ-K-direction (denominated W3(K),

shown in Fig. 3.1(b)), in order to illustrate the various features of guided propa-

gation in line-defect PC waveguides. The band-structure is shown in Fig. 3.3. All

depicted propagation bands are for modes with even symmetry with respect to the

longitudinal waveguide direction; odd modes are also supported, however these do

not add any useful information to the discussion and were thus suppressed.

The band-structure calculation was performed with the Plane-Wave Expansion

(PWE) method[15], considering a super-cell with six rows of holes next to the

defect region. Modes sought were of the form uk(r) · exp(−ik · r), with k pointing

in the Γ-K direction in the irreducible Brillouin zone. The background index was

considered to be nTE = 3.26. Since TE polarization is considered, the scalar Bloch

wavefunctions are for the (only) magnetic field component Hy, perpendicular to

the crystal plane.
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Figure 3.3: Band-structure for a three-line defect waveguide in the Γ−K direc-
tion, with r/a = 0.35 and n = 3.16. The color-scale corresponds to the magnetic
field energy confinement in the defect region.

Mode Confinement

Most modes of the line-defect waveguide structure are perturbed versions of

bulk crystal ones and have eigenfrequencies departing slightly from their unper-

turbed values; the electromagnetic energy is distributed throughout the crystal

regions in such cases. At the same time, many modes exist whose fields are local-

ized within the defect regions, and are thus more significant for efficient guided

light transmission. In order to discern guided modes from unbound crystal ones

in Fig. 3.3, a color scale was created that relates to the magnetic-field energy

confinement in the defect region. The confinement is calculated as

Γ =

∫

Vdef.
|H|2dV

∫

Vcell
|H|2dV

, (3.2)
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where Vdef is the volume of the defect region and Vcell the computational-cell

volume. High confinement values are a good (however not final) indication of a

laterally bound mode.

The band-structure of the original bulk PC was plotted as the gray-shaded

regions in Fig. 3.3 so waveguide modes could be located with respect to the crystal

band-gap. Waveguide modes within the gray areas are at frequencies where bulk-

crystal modes exist: assuming that the bands vary smoothly within the Brillouin

zone and are bounded by their values at the zone boundaries, all bulk PC modes

with k-vector components in the direction of the waveguide will be mapped into

the gray regions. It is clear from the figure that the bulk crystal band-gap extends

between a/λ ≈ 0.225 and a/λ ≈ 0.348. Although the bulk gap provides useful

information about the character of the waveguide modes, it does not provide

complete information about lateral confinement.

The Air and Substrate light-lines mark the limits of when the Bloch k-vector

in the longitudinal direction becomes larger than the ‘free-space’ k-vector either in

air or in the substrate material. Modes located above these lines are expected to

radiate correspondingly into the air or substrate, or both in a real 3D structure[14].

In general, two different types of guiding mechanisms exist in a PC waveguide:

crystal-guiding and index-guiding. Confinement in the first case is provided by

the high crystal reflectivity at bulk band-gap frequencies; crystal walls act sim-

ilarly to metallic reflectors, allowing the field to extend very little past the de-

fect region. Previous studies have in fact shown that such crystal-guided modes

share many features with those of metallic-waveguide.[17, 18] Examples of crystal-
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guided modes are pointed out within the bulk crystal band-gap in Fig. 3.3. In the

index-guiding case, a mechanism similar to total-internal reflection takes place,

where the crystal regions act as uniform media with effective, average refractive

indices. A band of index-guided modes is indicated in Fig. 3.3 starting from

a/λ = 0, becoming better confined at increasing frequencies; confinement higher

than 0.7 in fact is achieved at a/λ ≈ 0.1. Similar behavior is observed in reg-

ular dielectric waveguides. It is interesting to notice that, as a consequence of

the guiding mechanism, index-guided modes remain well-confined even within the

bulk dielectric-band range a/λ ≈ 0.18 - a/λ ≈ 0.21.

Field Profiles

Figure 3.4(a) shows a detail of the band-gap region of Fig. 3.3, with three

highlighted modes belonging to three distinct bands at k = 0.186. Modes b. and

c. are crystal-guided, while a. is index-guided. All three have field distributions

closely resembling those of the first three even guided modes of a regular closed

metallic waveguide, apparent from the amplitude-squared magnetic-field distri-

bution maps shown in Fig. 3.4(b): mode a. has a single maximum within the

defect; modes b. and c. respectively three and five maxima. From a different point

of view: the magnetic field component changes sign along the defect width zero

times in mode a. and two and four times respectively in modes b. and c.. These

modes will be henceforth referred as modes of order n, with n being the number

of zero-crossings of its magnetic field component. Notice that in the case of even

modes such as the ones above, the number of zero-crossings is always even. In
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the case of odd modes, this number is equally odd, one of the crossings happening

close to the center of defect.
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Figure 3.4: (a) Detail of the band-structure shown in Fig. 3.3. (b) Amplitude-
squared magnetic field component of the TE-polarized modes a., b., c., d., e., f.
and g. highlighted in (a). The magnetic field is perpendicular to the crystal plane.

Simulations show [10] that preferential excitation of PC modes of a particular

order can be achieved through the incidence of matching-order modes of a butt-

coupled slab waveguide. From a practical point of view, however, the excitation

of high-order modes in slab waveguides presents its own challenges and for this

reason coupling to zero-order PC waveguide modes is in general preferable.

The anti-crossings indicated in Fig. 3.4(a) show instances of satisfaction of

the Bragg condition between counter-propagating plane-waves in the waveguide

direction. This happens however in a way that an anti-crossing can be considered

as result of a longitudinal perturbation that couples effective counter-propagating

modes of different orders [19]. Evidence of this is the fact that modes d. and c.

are of the same order, the same being valid for modes b. and e. Notice as well
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that the band-gap between modes e. and f. at the Brillouin-zone boundary comes

from the Bragg condition between modes of the same order.

3.2.3 Slow-Wave Propagation and Mode Coupling

As in Chapter 2, the group velocity of calculated Bloch modes can be obtained

from the expression

∇kω =

〈

un

∣

∣

∣

∣

∣

∂Ĥ

∂k

∣

∣

∣

∣

∣

un

〉

, (3.3)

where |un〉 is a normalized Bloch mode and Ĥ is the Hamiltonian of Eq. 3.1.

Applied to the zero-order modes at the left-most anti-crossing in Fig. 3.4(a), this

expression leads to the group velocity curves in Fig. 3.5. On both sides of the gap,

the group velocity tends quickly to zero; the Group Velocity Dispersion (GVD),

however, given by D = −dvg/dλ, clearly has different signs on each side. This

interesting feature, common to all Bloch modes at band anti-crossings, will be

explored in more detail in Section 3.3.

It is clear that vg = ∇kω tends to zero whenever a band edge is approached.

Modes with group velocity tending to zero are henceforth referred to as slow

waves. In the band structure of Fig. 3.4(a) -and in fact in the band structure of

any line-defect waveguide-, band edges of bound modes can be found either at the

anti-crossings or at the Brillouin-zone boundary k = π/a or at k = 0.

The slow propagation of mode g. in Fig.3.4(a) and nearby modes on the same

band falls into the latter case. This phenomenon is very similar to what is ob-

served near mode-cutoff in hollow metallic waveguides, another consequence of the
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Figure 3.5: Group velocity for zero-order Bloch modes near the left-most anti-
crossing in the band-diagram of Fig. 3.4(a).

similarity between crystal-guided and metallic-waveguide modes discussed above.

As cutoff is approached in metallic waveguides, the longitudinal component of

the propagating guided mode k-vector tends to zero; expansion of the field in

plane-wave components reveals that these tend to travel ever more obliquely with

respect to the waveguide as cutoff draws near. The field distribution of mode g.

in Fig. 3.4(b) presents small longitudinal variations that can be correlated with

the small longitudinal travel of its plane-wave components. It is important to

notice though that this mechanism is not the only one responsible for slow-wave

propagation at k = 0, as coupling of counter-propagating waves may also happen

at this particular k-vector [20].

Slow wave propagation at band anti-crossings is caused by the coupling be-

tween counter-propagating waves, as detailed in what follows. Consider two bands

of modes that anti-cross at a certain k-vector in the band diagram. Far away from
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the anti-crossing, coupling between plane waves is weak in the longitudinal direc-

tion, and coupling in the lateral direction defines order of the guided Bloch modes

on both bands. As the anti-crossing is approached, coupling between longitudinal

components of the Bloch modes becomes strong resulting from partial satisfac-

tion of the Bragg condition in that direction; at the same time the strong lateral

coupling that defines the mode order is maintained and thus propagation near

such band-gaps can be reasonably well described by considering the coupling of

two effective, unperturbed counter-propagating straight waveguide modes, caused

by an effective longitudinal waveguide-wall perturbation. Effectively, this con-

stitutes a one-dimensional system that can be described by 1D Coupled-Mode

Theory [21, 22], a topic explored in more detail in Section 3.3 below.

It is important to point out that the slow propagation of crystal-guided modes

of the same nature as g. near k = 0 (and far away from any band anti-crossing)

does not rely on the mechanism just described; as such the transmission transfer

function for light carried by these will be similar to that of a regular (i.e., with

no longitudinal variation) waveguide with the dispersion relation displayed in the

band-structure. The disadvantage of using this particular set of modes for slow

propagation is that they are of higher order and thus demand special schemes

for efficient coupling from external ridge waveguides. On the other hand, an

indirect use of this crystal-guided band can be realized at its anti-crossing with

the index-guided band. This would correspond once again to the effective counter-

propagating mode coupling case.
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Coupling of Modes of Different Parity

Coupling between effective even and odd counter-propagating modes can be

achieved by shifting the waveguide walls in the propagation direction by half

lattice constant relative to each other [19, 23]. An example of such waveguides is

shown in Fig. 3.6(b), the original structure of which is the W3(K) of Fig. 3.6(a);

its band structure is shown in Fig. 3.7(a).

(a) (b)

Figure 3.6: (a) Three-line defect W3(K) PC waveguide. (b) Asymmetric three-
line defect W3(K) PC waveguide, formed by shifting the left W3(K) waveguide
wall by half lattice constant it the longitudinal waveguide direction.

Here, singled-out Bloch modes with subscript e have even symmetry, while

those with subscript o have odd symmetry, as illustrated by the field distributions

in Fig. 3.7(a). It is clear that bands include Bloch modes of both even and

odd parities and that each anti-crossing involves modes of different parity. An

additional interesting feature in the diagram is the existence of mode degeneracies

at the Brillouin zone boundary at k = π/a: due to the absence of coupling, no

frequency gap is created between counter-propagating modes at the Brillouin-zone

boundary.

The coupling of different-parity modes can be predicted from coupled-mode

theory considering a waveguide with periodic sidewall corrugations, the corru-
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Figure 3.7: (a) Detail of the band-structure shown in Fig. 3.3. (b) Amplitude-
squared magnetic field component of the TE-polarized modes ae., ao., be., bo.,
ce. and de. highlighted in (a). The magnetic field is perpendicular to the crystal
plane.

gations on each sidewall being de-phased by half lattice constant. Following the

perturbation theory of [24], consider a waveguide extending along the z-direction,

providing field confinement in the x-direction. The side-wall corrugation provided

by the PC waveguide walls can be assumed equivalent to a periodic perturbation

∆ǫ of the dielectric constant in the z-direction [25]:

∆ǫ(x, z) = ∆ǫ(x)
+∞
∑

−∞
amei(2mπz/Λ) (3.4)

The coupling between two TE counter-propagating waves p and q of different

orders (and therefore different propagation constants βp and βq) caused by the

n-th z-harmonic above is given by the expression

κ = an
iωǫ0

4

∫ +∞

−∞
∆ǫ(x)E(p)

y (x) · E(q)
y (x)dx. (3.5)

In this situation 2nπ/Λ ≈ βp + βq. If ∆ǫ(x) is an odd function of x, the coupling

coefficient κ is null for E
(p)
y (x) and E

(p)
y (x) of the same parity.
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Bandgap Tuning

The position of anti-crossings can be made to depart from an original posi-

tion by ’fine’ tuning of the defect region width [19, 23]. Consider an asymmet-

ric waveguide such shown in Fig. 6.15, derived from a W3(K) waveguide W3(K)

waveguide whose walls were longitudinally displaced by a/2 with respect to each

other and laterally by 2·d with respect to their original positions. Figures 6.17(b)-

6.17(c) show TE band diagrams for different values of d, for r/a = 0.24 and a

background index nTE = 3.3. Values of d used were 0.15 · ax, 0.30 · ax, 0.50 · ax

and 0.8 · ax, with ax =
√

3 · a/2.

Figure 3.8: Asymmetric waveguide derived from a W3(K) waveguide W3(K)

waveguide whose walls were longitudinally displaced by a/2 with respect to each
other and laterally by 2 · d with respect to their original positions.

The original (d = 0) waveguide presents an anti-crossing at a/λ ≈ 0.221

between a zero-order (even) and a third-order (odd) band. Increasing the defect

width by d = 0.15 · ax causes the anti-crossing to move to lower frequencies, a

trend also followed for d = 0.30 · ax. Notice that the eigenfrequencies at k = 0

shift downwards as well; this is similar to what happens to the eigenmode of a

metallic waveguide, the cutoff frequencies of which is inversely proportional to the

guide width. For d = 0.5 · ax, the band is at low enough frequencies that the

anti-crossing is non-existent, having collapsed into the dielectric band. On the
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other hand, another anti-crossing forms with a 5th-order band, at a/λ ≈ 0.238.

Further increase of the channel width, d = 0.8 · ax, brings this band-gap down to

a/λ ≈ 0.23.
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Figure 3.9: Band structures for asymmetric waveguides with (a)d = 0.15 · ax,
(b)d = 0.30 · ax, (c)d = 0.50 · ax and (d)d = 0.8 · ax, with ax =

√
3 · a/2.

An important aspect to be noticed in the band structures is that, as the bands

approach the bulk crystal dielectric band, confinement in the defect region tends

to decrease. This results from the less efficient reflectivity observed close to bulk

waveguide band-edges. Band-gaps appear to become narrower wider channels.

This can be understood considering a stronger wave coupling due to the narrower

waveguide widths.
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A discussion on stop-band position tuning by carrier-injection-induced refrac-

tive index changes can be found in the future work section of Chapter 7.

3.2.4 Correlating Band Structure and Transmission Spec-

tra

In the same way as described in Chapter 2, the existence of Bloch modes

in infinite PC waveguides can be correlated with transmission spectra of finite

structures: power is expected to be carried by Bloch-like waves in a finite PC

guide only within the frequency ranges where corresponding Bloch modes exist in

the infinite case. In general, band-gaps for guided modes can be readily identified

in the transmission spectra, and so can a few fine features such as Fabry-Perot-

like resonances. These give clues as to which Bloch-like modes are responsible for

power transmission, for which propagation characteristics can be calculated.

A good example of this is displayed in Fig. 3.10, where the TE band-structure

(a) of a symmetric W3(K) waveguide is shown next to two transmission spectra,

obtained by exciting the guide input with the (c) fundamental and (b) second-

order modes of an air-cladding slab waveguide of the same width as the PC guide

channel. The spectra were extracted from Finite-Differences Time-Domain sim-

ulations of a 48-row waveguide connected to input and output air-cladding slab

waveguides as described above. Short Gaussian pulses with the mentioned spatial

field profiles were made incident upon the input guide and the power coupled into

the same modes was monitored at the output.
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Figure 3.10: (a) Detail of a W3(K) band-structure. Blue dashed lines indicate
zero-order bound Bloch modes, red dashed lines correspond to second-order (even)
Bloch modes. (b) FDTD-calculated transmitted power for 2nd-order mode exci-
tation. (c) FDTD-calculated transmitted power for zero-order mode excitation.

The 0-order mode excitation will cause most power to couple to the 0-order

Bloch-like modes indicated by the blue dashed lines in the band-structure. Fea-

tures in the spectrum that corroborate this prediction are the small stop-band

centered at a/λ = 0.27 and the fast fringes at its edges. Both features correspond

to the small 0-order mode band-gap around the same frequency in the band,

indicated by the blue rectangle in the band structure.

Excitation with the 2nd-order mode, by the same token, will tend to cause

most power to couple to second-order PC modes, indicated by the dashed red

lines in the band structure. A very wide band-gap exists close to a/λ = 0.28

for such modes, indicated by the red rectangle. This wide gap translates into an
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equally wide stop-band in the transmission spectrum. Notice also that the band

reaches the Brillouin zone boundary at a/λ ≈ 0.235. This is manifested by the

fast fringes in the transmission diagram. Notice that the same fringes also appear

in the 0-order mode excitation spectrum. This is because part of the incident

power is also coupled into second-order modes.

Further information from the band diagram can be obtained as follows. Fig-

ure 3.11(a) shows the group velocity normalized to the velocity of light in vacuum

c as a function of a/λ for the 2nd-order PC band. It is evident that the group

velocity becomes very small close to the Brillouin-zone limit. Also, it changes

very rapidly in the frequency interval a/λ = 0.236 − 0.25, which translates into

a rather large dispersion. Group velocity for the 0th-order PC band is shown in

Fig. 3.11(b). For the frequency range a/λ = 0.236 − 0.25, the group velocity is

flat and approximately equal to 0.3 · c. Almost null dispersion is observed for this

band. The band diagram and the group velocities were obtained from a plane-

wave expansion-method, using a seven-period super-cell in the lateral direction

[15]. This information can be related to the evolution of zero- and second-order

mode pulses along the waveguide, which can be obtained from the FDTD simu-

lations described above.

Figures 3.12(a) and 3.12(c) show the time evolution of pulse power at the PC

guide input for 0- and 2nd- order mode excitations respectively. Figures 3.12(b)

and 3.12(d) show their respective pulse powers at the output waveguide. The

carrier of the signal was chosen such that a/λ = 0.237. As expected for 0-order

mode excitation, the pulse at the output shows almost no broadening, since mostly
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(a) (b)

Figure 3.11: (a) Group velocity for the second-order Bloch modes from Fig. 3.10.
(b) Group velocity for the zero-order Bloch modes from Fig. 3.10.

modes on the non-dispersive 0th-order band were excited. The delay between

input and output traces is about 0.32ps, measured between the maxima. The

distance between input and output time-monitors was 28.3µm, leading to a group

velocity of approximately 0.29 ·c, as expected. For the 2nd-order mode excitation,

the delay between input and output pulses is of about 1.2ps, yielding a group

velocity of approximately 0.08 · c. Also, the output pulse’s FHWM is about 3.1

times that of the input: the propagation is extremely dispersive. The small trailing

pulse in Fig. 3.12(d) is delayed by the same amount as the pulse in Figure 3.12(b);

this is due to partial coupling of the input field into the 0th-order PC band modes.

This shows that power can be preferentially coupled to specific PC modes by

changing the input field profile, and thus their useful propagation characteristics

can be explored. It is important to point out, though, that the peak power for

the 2nd-order excitation case is close to only 3% that of the input peak power;
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most part of the energy is reflected at the input of the PC guide due to the large

mismatch between the group velocities in the slab and in the crystal.

(a) (b)

(c) (d)

Figure 3.12: FDTD simulation results. (a) Pulse envelope for 0-order slab mode
at the PC waveguide input. (b) Output pulse envelope for 0-order mode excitation.
(c) Pulse envelope for second-order slab mode at the PC waveguide input. (d)
Output pulse envelope for second-order mode excitation.

Notice all of the information obtained above point to the fact that different

modes of the PC waveguide can be preferentially excited by proper incidence at

the guide input.

3.3 Band-edge Propagation

We now return to the study of the band gap for zero-order modes analyzed

in 3.2.3 (displayed again in Fig. 3.13 for convenience). This region is interesting

due to the availability of low group velocities and large GVD of opposite signs on

65



its opposite edges. An additional advantage is that the Bloch modes in question

are preferentially excited with a zero-order slab mode at the guide input. Such

features are convenient from the point of view of optical signal processing because

they would in principle allow 1) longer transmission group delays 2) enhanced

GVD and dispersion management capabilities and finally 3) easy coupling to the

useful Bloch modes.
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Figure 3.13: Detail of the anti-crossing between 0- and 4th-order modes in the
W3(K) band-structure of Fig. 3.4.

The availability of slow propagation and large dispersion can be evaluated with

a series of FDTD simulations, in a similar procedure to that of 3.2.4. In the present

case, fundamental slab waveguide modes at various wavelengths around the gap

are made incident upon the W3(K) input and pulse envelopes at the output are

analyzed. The total delay experienced by the pulses are compared to the delay

experienced by a pulse traveling through an air-cladding guide of the same length

as the PC guide, to yield the curves of relative delay shown in Fig. 3.14(a). Input

66



pulses were chosen to be 1-ps-FWHM Gaussians and the comparison was realized

between pulse peaks.

The figure shows that as the band-gap is approached on both sides, pulses

experience increasing time-delays with a maximum achieved time-delay of ≈1ps.

At the same time, Fig. 3.14(b) shows the broadening suffered by the pulses at each

corresponding wavelength. Broadening can be related to two effects: the consid-

erable group-velocity dispersion incurred at the edges, as predicted in Fig. 3.5;

and the proximity to band edge, which causes attenuation of part of the pulses’

frequency components (i.e. band-gap frequencies). The maximum broadening

observed was of ≈ 45% of the 3 − dB bandwidth, a figure compatible with 20m

of standard optical fiber. It is important to notice as well that, far away from

the band-gap, the extra delay tends to zero and the pulse is not considerably

broadened, as expected.

(a) (b)

Figure 3.14: (a) Simulated relative pulse delay as a function of normalized fre-
quency for various input pulse wavelengths close to the band-gap. (b) Correspond-
ing pulse broadening. The blue rectangular region corresponds to the band-gap
described in Section 3.2.3.
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To show that dispersion plays an important role in pulse broadening, chirped

pulses of the format

Hy = φ0(x) · e−( t
T0)

2

· sin
[

ω0t + C ·
(

t

2 · T0

)2
]

(3.6)

were launched into the PC waveguide, centered at the wavelengths where maxi-

mum broadening was observed on each side of the gap. The chirp parameter C

was set to be 0, -5 and +5 at each wavelength. The output pulse envelopes for

each case are shown in Fig. 3.15, indicating, as expected, that pulses with opposite

chirp signs will be either compressed or broadened complementarily.

Notice that pulse distortion due to dispersion on one of the band-edges can be

compensated by propagation on the opposite band-edge, which presents dispersion

of opposite sign. One could in principle cascade two waveguides with slightly

different lattice constants, such that the signal would be on opposite sides of the

band-gap in each guide. Proper design of each section would lead to minimal

pulse distortion. This scheme has been explored in Fiber Bragg Gratings (FBGs)

in [26].

3.4 Slow-wave Propagation and Coupled-Mode

Theory

Inasmuch as FDTD simulations might accurately model pulse propagation in

PC waveguides, a better understanding of band-edge slow-wave propagation can

be achieved from the introduction of a simplified physical model describing the
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Figure 3.15: Simulated output pulse envelopes at opposite sides of the band-gap
for different input pulse chirp parameters C.

underlying physical mechanism. As mentioned in 3.2.3, band-gaps at band anti-

crossings such as depicted in Fig. 3.13 can be considered to stem from the coupling

of two effective counter-propagating waveguide modes[19, 27, 11], the coupling

being provided by an effective longitudinal wall corrugation; from a different an-

gle, propagation near the band-gap edges can be modeled with an effective one-

dimensional model, such as developed in Coupled-Mode Theory (CMT)[21, 22].

In its basic form, CMT describes the evolution of an optical mode as it travels

along a medium with a longitudinal periodic refractive index perturbation. The

periodicity of the perturbation causes coupling between a forward- propagating

mode and a backward-propagating counterpart, at frequencies close to where the

Bragg condition is satisfied. A transmission stop-band is observed centered at the

Bragg frequency, due to a strong energy transfer from the impinging wave into its

backward-traveling counterpart. The propagation characteristics of both waves
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are clearly dependent on the coupling strength between the two and detuning

from the Bragg frequency. CMT predicts the following equations for transmission

and reflection coefficients of a finite 1D periodic medium:

t =
2σ · eδ−L

(δ+ + σ) e+σL − (δ+ − σ) e−σL
(3.7)

r =
2i|κ| sinh (σL)

(δ+ + σ) e+σL − (δ+ − σ) e−σL
(3.8)

In these equations, which are valid for coupling of waves of different propagation

constants, κ is the coupling coefficient, δ± = ᾱ± + i(β̄± − β̄0±), σ2 = κ2 + δ2
+,

ᾱ± = (α+ ± α−)/2, β̄± = (β+ ± β−)/2, α± and β± are the loss and propagation

constants for forward- and backward-propagating waves and L is the total length.

The propagation constants are such that β± = ωn±/c, where n± is the phase

refractive index of the unperturbed waves. The lateral mode variation is taken

into account by the coupling coefficient (this is in fact how the problem is reduced

to be one-dimensional) [21, 25, 22]. Notice that propagation losses of any kind

(e.g. material absorption and out-of-plane radiation, either intrinsic or caused

by hole imperfections in PC guides) can be phenomenologically modelled by the

loss parameter. The curves shown in Fig. 3.16, obtained from Eqs. (3.7) and

(3.8) with β± = β,α± = 0, δ± = δ, reveal the character of the transmission and

reflection transfer functions for lossless band-edge propagation. The gray-shaded

region corresponds to the photonic band-gap. The resonances observed in all

curves are due to the finiteness of the periodic medium [28]; it is apparent that a

maximum group delay is obtained at the first transmission resonance just outside

of the band-gap.
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Figure 3.16: Typical transmission, reflection and transmission and group delay
characteristics for CMT filter.

The many details of the above filter characteristics have been discussed at

length in various publications[12, 29, 13, 28, 26]. The following section covers

some of its important aspects.

3.4.1 Pertinent Filter Characteristics

It is convenient to initiate the investigation considering the case when propa-

gation losses are null (α± = 0). The introduction of losses is detrimental to the

maximum group delay, as well as to the sharpness of resonances in the amplitude

responses, and thus the lossless case constitutes a best-case. The effect of losses

will be treated in a later section.
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Transmission

From the preceding discussion, it is expected that the bandwidth of the first

resonance outside the gap and the maximum achievable group delay be intimately

related to each other. This can be easily realized by examining Eq. 3.7 in the

vicinity of σL = π. The maximum group delay, obtained exactly at this point, is

given by

τg(σL = π) = ηL

[

2 +

(

K

π

)2
]

, (3.9)

where η = (n++n−)
2c

and K = κL. At the same time, expanding Eq.3.7 around the

first maximum yields:

|t(σL ≈ π)|2 ≈ 1

1 + (ω−ω0)224π

/

ηKL
q

1+(K
π )

2

352

(3.10)

The maximum group delay is seen to increase with ηκ2L3, while the bandwidth

increases with (ηκ2L3)
−1

. It is important to point out the dependence of both

on the phase indices n±. These can be quite large for high-order modes close to

k = 0, as is the case of the 4th-order of Fig. 3.13. The availability of such slow

modes is a clear asset offered by PC waveguides. Another important advantage is

the large achievable coupling coefficients [11, 27], due to both channel narrowness

and large index discontinuities.

Defining BW3dB to be the 3-dB resonance full-width, the following fundamen-

tal result is seen to be valid:

lim
κL→∞

BW3dB × τg,max = 2. (3.11)
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This means that large delays cannot be achieved with large bandwidths; an alter-

native interpretation is that a pulse will only experience a large delay relative to

its width if its spectrum is considerably wider than the filter resonance, distortion

thus being unavoidable. This result can be confirmed from Fig. 3.17, where the

product in Eq. 3.11 is plotted as a function of κL for BW3dB and τmax obtained

from Eq. 3.7, with no approximations. Curves for the 0.7 and 0.9-transmission

bandwidths are also shown.
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Figure 3.17: Bandwidth-maximum-delay product for the CMT filter as a func-
tion of κL. Bandwidths considered were taken at 50%, 70% and 90% of the peak
transmissivity.

The fact that GVD has opposite signs on opposite sides of the band-gap can

be observed in Fig. 3.18, obtained by taking the derivative of τg from Fig. 3.16

with respect to ω. The curve is an odd function of δ that changes sign many times

along the frequency axis. Notice that the first zero-crossings outside the band-gap
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region correspond to the group delay maxima in Fig. 3.16. In addition, high-order

dispersion is not negligible [26].
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Figure 3.18: GVD coefficient β2 = dτg/dω for corresponding to Fig. 3.16. The
gray rectangle indicates the band-gap.

Varying the grating period along its length (chirping) and smoothing the cou-

pling coefficient transitions at the grating input and output (apodization) can

be used to reduce band-edge resonances; these schemes are in fact widely used

in FBGs [30]. Less prominent transmission resonances mean at the same time

reduced band-edge reflectivity lobes, as well as lower group delay and dispersion.

Clearly, a compromise must be achieved between these filter characteristics. In

general, however, low band-edge reflectivity levels, pass-band ripple and disper-

sion are desired, which are only achieved together with a lower maximum group

delay.

Reflectivity

Effectively, a PC waveguide is a distributed-feedback mirror with a (poten-

tially) very large coupling coefficient defined by a narrow channel width and large

index discontinuities. It offers, as a result, extremely high reflectivities over very
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wide bandwidths for a very small number of periods, or total length. The band-

width prospect can be inferred from the following expression for the band-gap

width, obtained by setting δ+ = κ:

∆± =
a

2π
· 4κ

n+ + n−
. (3.12)

The reflectivity consideration can be understood from Eq. 3.8 calculated at the

middle of the band-gap,

|r(δ+ = 0)|2 = | tanh(κ · L)|2, (3.13)

which tends quickly to 1 as κ · L increases. A typical reflectivity spectrum such

as in Fig. 3.16 presents a reasonable reflection level even outside of the band-gap,

with a series of local reflectivity maxima wherever transmission minima are found.

In photonic integrated circuits with internal sources [31], even small reflected

waves in the optical path may cause broadening of the internal laser linewidth, an

effect that might lead to performance degradation in systems applications. This

constitutes a strong objection to the use of PC waveguides in this context, unless a

mechanism to mitigate the distributed-feedback reflected signal is available. One

possible alternative when butt-coupling ridge and PC waveguides would be the

employment of structures in which backward-propagating modes are of higher

order. Mode filters based on waveguide tapering or even Multimode Interference

filters [32] could then be used to reduce back-reflected waves to acceptable levels.

Experimental evidence showing good prospects for this technique will be explained

in Chapter 6.
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Effect of Propagation Losses

The deterioration of the maximum group velocity at the band-edges due to

propagation losses is a counter-intuitive effect that can nevertheless be linked

to the concomitant sharpness degradation of the amplitude-response resonances.

This effect is illustrated in Fig. 3.19, where the transmissivity and group delay

for a CMT filter with β± = β, α± = α, δ± = δ and increasing values of α · L

are plotted. Enhanced band-edge group delay is a result of wave interference

at the waveguide output provided by the distributed-feedback mechanism. The

way in which individual wave components of an optical signal are delayed and

attenuated is intimately related, given that the system is causal 1. It is apparent

that the introduction of losses causes a less effective wave interference, noted

from the smaller amplitude of the band-edge resonances. The connection between

amplitude and phase is such that reduced delays are required for the satisfaction

the causality condition.

Notice that the transmission stop-band edge slopes also become less sharp with

either forward or backward propagation losses. In general, however, higher-order

modes tend to have considerably higher losses and thus have a larger influence

these slopes.

At the same time, the maximum values of transmissivity and reflectivity change

in particular ways depending on α±. Far away from the bandgap (|δ+|2 >> κ2),

no mode-coupling takes place and as a result |t|2 ≈ exp(−α+L); the reflectivity

1From a digital filter theory point of view, the transfer function 3.7 describes a Minimum
Phase Filter (MPF), the amplitude and phase of which are uniquely related and form a Hilbert
Transform pair [29, 13].
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Figure 3.19: Power transmission and group delay curves for varying values of
propagation losses.

at the gap center, on the other hand, is

|rmax|2 ≈
κ · sinh(σL)

ᾱ+ cosh(σL) + σ sinh(σL)
, (3.14)

with σ2 = κ2 + ᾱ2
+, clearly depending on ᾱ+, the average attenuation constant

between the forward- and backward-propagating waves.

Propagation losses have thus a significant influence on both transmission and

reflection filter characteristics.

3.4.2 Comparison with FDTD

The applicability of the CMT equations for modeling of band-edge propagation

has been demonstrated in many experimental articles in the literature [11]. In

order to illustrate the accuracy of the CMT approximation, a comparison is next

presented between FDTD simulation results and those obtained from Eq. 3.7,
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the test consisting simply of launching a 1-ps pulse through the 48-period W3(K)

waveguide described in Section 3.3.

The initial step consists in finding appropriate values for the parameters κ and

n±. Following the procedure used in [27], the phase indices n± can be taken to be

the slopes of the zero- and 4th-order mode bands, taken far enough from the anti-

crossing that mode-coupling is minimal, however close enough that no interaction

with other bands occurs or band-edges are reached. Under these regimes, the

branches are roughly linear, and the Bloch-mode group velocities are related to

the phase indices by vg± = c/n±. The coupling coefficients can be obtained from

the band-gap width ∆± given by Eq. 3.12.

(a) (b)

Figure 3.20: (a) Power transmission spectra obtained from FDTD and CMT. (b)
Output pulse envelopes obtained from FDTD and CMT under similar excitation
conditions.

Following these guidelines, the band structure in Fig. 3.13 yields n+ ≈ 3.4,

n− ≈ 29.0 and κ ≈ 27.95cm−1. The total guide length was L ≈ 20µm and

losses are considered to be null. Figure 3.20(a) shows a detail of the amplitude-

squared FDTD- and CMT-calculated transfer functions. The feature displayed
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is the first resonance outside of the band-gap on one of the band-edges, where

group delay is expected to be maximum; its 3-dB full-width is ≈ 0.5nm. The

matching between the two curves is quite good. Output-pulse envelopes from the
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Figure 3.21: Input, 50ps pulse envelope and the corresponding output pulse.
The delay between the two is ≈6ps. Curves were obtained from Eq. 3.7.

two methods are shown in Fig. 3.20(b). Input pulses were Gaussian-shaped, with

1ps FWHM, centered at the group-delay maximizing wavelength. Pulses in both

cases experienced a delay of ≈2.5ps and suffered very similar distortions. The large

distortion observed is mostly due to the very large (≈2nm FWHM) pulse spectral

width, as compared to the filter resonance width. A 50-ps-FWHM input pulse,

having a much narrower (≈ 0.04nm FWHM) spectrum, is delayed by roughly 6ps,

considerably more than in the previous case, suffering much less distortion, as

seen in Fig. 3.21. Notice that the experienced delay is very small compared to

the pulse FWHM, despite being almost twice that of the 1-ps pulse case. The

maximum delays and corresponding transmission bandwidths achievable with the

79



present waveguide as a function of its length L (i.e., number of crystal periods) are

shown in Figures 5.16 and 3.22(b), obtained from the CMT transmission equation.

The bandwidth is set to correspond to 90% transmission. The achievable delay

at L ≈ 50 · a is close to 6ps, as obtained for the narrow-bandwidth pulse above.

The bandwidth is seen to decrease dramatically with length, while the maximum

delay increases in a related way.
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Figure 3.22: (a) Group delay as function of length. (b) Transmission bandwidth
as function of length.
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3.5 Summary and Conclusions

In this chapter, relevant theoretical aspects of PC waveguides were covered

in detail. The assessment was done based on the analysis of PC waveguide

band-structures calculated with the PWE method described in Chapter 2, Finite-

Difference Time-Domain (FDTD) simulations and analytic Coupled-Mode Theory

(CMT). These three methods of analysis yield three different, almost complemen-

tary points of view about propagation in PC structures.

An important notion to retain is the fact that the bulk crystal forming the

PC waveguide walls in general presents an omnidirectional band-gap for a given

polarization. Creating a linear defect in the bulk crystal (i.e. defining a line-defect

waveguide) causes a series of defect-confined modes to appear within the bulk

crystal band-gap frequency range. These modes are confined in the defect either

due to the band-gap (crystal-guided modes) or by total-internal reflection (index-

guided modes). All band-structures presented in this chapter include a color-scale

relative to the field confinement in the defect region. This information is usually

absent in most PC waveguide articles in the literature, although it constitutes a

very good method for discerning defect-confined and unbound crystal modes.

Defect-confined modes can be categorized, as in regular waveguides, according

to the number of zero-crossings experienced by the main field component along the

waveguide cross-section. In general, many bands of modes of different orders exist

within the bulk crystal band-gap frequency range. Through FDTD simulations, it

is shown in the text that preferential excitation of modes of specific orders can be
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realized by incidence of standard slab-waveguide modes of corresponding orders

at the PC guide input.

The longitudinal waveguide periodicity causes some of the bands to anti-cross,

thereby creating small band-gaps for the bands involved. The more interesting

propagation characteristics of PC guides are found close to such band-gaps: slow

and highly dispersive propagation, which so far seems to be the strongest asset

offered by line-defect waveguides, specially considering the high losses found in

deeply etched crystals.

Generalized CMT equations for coupling of modes of different orders were

theoretically investigated for modelling the propagation around stop-bands formed

at anti-crossings of Bloch mode bands. The generalized equations were shown

produce very similar results to those obtained from exact FDTD simulations,

evidencing the validity of the analytical approximation. The physical mechanism

described by CMT is the coupling of counter-propagating one-dimensional waves

caused by a periodic perturbation of the propagation medium. The study of the

analytical CMT expression is very useful since it leads to a clear understanding

of the achievable filter transfer functions.

An assessment of the various parameters influencing the PC waveguide trans-

fer functions was carried out, assuming the validity of the analytical model. The

following conclusions were reached regarding band-edge propagation in PC wave-

guides: the transmission and reflection transfer functions of a finite PC guide at

the edges of a band-anti-crossing stop-band present a series of Fabry-Pérot-like

resonances related to the finiteness of the structure. A maximum transmission
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group delay is found at the first transmission maximum outside of the band-

gap; the maximum delay is larger the narrower the bandwidth of the transmission

peak, such that fundamentally large delays can never be achieved with large band-

widths. Additionally, large propagation losses are detrimental of the maximum

achievable group delay, apart from the power transmission level. In summary, the

propagation characteristics close to defect-confined mode band-edges offer limited

applicability in terms of integrated delay elements, since bandwidth will always

be limited for large group delays. The large band-edge dispersion observed on the

other hand is very promising for pulse-shaping applications.

Finally, it must be pointed out that, even though all explanations are related

to propagation in a multimode three-line-defect waveguide in a triangular lattice,

the phenomena described are common to all types of line-defect guides.
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Chapter 4

Fabrication Technique

4.1 Introduction

In this chapter the process used for the fabrication of experimental test devices

is explained in detail. One of the main goals of this investigation was the develop-

ment of a fabrication platform that could allow the incorporation of photonic crys-

tals (PCs) to Photonic Integrated Circuits (PICs) based on a mature, pre-existing

platform [1]. PICs based on this platform were fabricated on epitaxially-grown

wafers encompassing a weak vertical confinement InP/InGaAsP slab waveguide

with quantum-wells that topped the quaternary guiding layer. Quantum wells

could nevertheless be selectively eliminated from specific wafer regions, before a

top InP regrowth step. Weakly confining, electrically pumped waveguides etched

on the top InP layer defined the different functional components of the circuit,

such as laser gain and phase regions, optical amplification and detection. An

example of a complex PIC incorporating a PC would be an interferometric wave-

length converter realized with regular ridge waveguides and including an internal
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source, as described in [1], which would include an extremely compact, passive

PC at its output for elimination of the input signal.

Starting from the established PIC fabrication process, compatible steps for PC

incorporation were added based on a previously developed process used for the

realization of membrane-type PCs [2]. This process involved the definition of PC

patterns on top of pre-existing etched InP mesas; precise alignment between PC

patterns and surrounding structures was ensured with electron-beam lithography

alignment techniques. Slight modifications to both processes had to be introduced

in order to maintain compatibility between each fabrication step. A detailed

description of the process flow is given in Section 4.2

The technique used for the definition of the sub-micrometer-scale PC features

was Electron-Beam Lithography (EBL). Details of the utilization of this technique,

including proximity-effect corrections, are explained in Section 4.3.

One of the most difficult tasks faced in the the process development consisted

in finding an etching recipe for the very deep (> 2µm), high aspect-ratio holes

required. Etching in an Inductively-Coupled Plasma (ICP) etching system with

chlorine-based chemistries was investigated for this purpose, finally yielding suf-

ficiently deep holes with acceptable sidewall roughness and tilt angles. Details of

this investigation are exposed in Section 4.4.
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4.2 General Fabrication Steps

The fabrication process reported here is a novel form of integration of deeply-

etched PC with standard photonic integrated circuit structures [3]. It is based on

the fabrication platform described in [1], with added steps for the inclusion of the

photonic crystals adapted from the process described in [2].

Epitaxial Structure

A schematic of the epitaxial structure used is shown in Fig. 4.1. The devices

were processed on an MOCVD-grown wafer encompassing an n-doped InP sub-

strate, a 1.37Q, 300-nm-thick intrinsic InGaAsP guiding layer, a 1-µm, p-doped

InP cladding layer, a 100-nm layer of highly p-doped InGaAs for the formation

of ohmic contacts and finally a 50-nm InP cap layer. Notice that a p-i-n junction

is formed between the top cladding and the n-doped substrate.

Figure 4.1: Wafer epitaxial structure.

This epitaxial structure is very similar to that used in [1], except that the top

cladding layer is 1µm thinner. The upper cladding layer thickness reflects a com-

promise between achievable etched hole depth and losses at the highly-conductive
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InGaAs layer. It was desired to minimize the interaction of the waveguide mode’s

evanescent tail with the top InGaAs layer and highly p-doped InP; this demanded

a thicker cladding. On the other hand, at the time of the processing the concern

existed that the etching technique would not be sufficient for the achievement of

hole depths of more than 2µm. A 1µm cladding thus seemed to constitute a good

compromise, even if larger propagation losses were expected. It must be pointed

out that the current InP hole-etching recipe allow the formation of holes more

than 3µm deep and can in principle be tuned for even higher aspect-ratios.

Waveguide definition

Ridge waveguides and mesa patterns were defined initially on a PECVD-

deposited SiN mask layer by contact photolithography. The pattern was trans-

ferred to the SiN mask by Reactive Ion Etching (RIE) in a CF4:O2 plasma. Next

they were transferred into the upper cladding layer by RIE using a Methane-

Hydrogen-Argon (MHA) mixture, followed by a 1:3 HCl:H3PO4 wet-etching step.

The dry-etch step is timed so that approximately 200nm of InP is left in the

unprotected regions.

Wet-etching in an HCl:H3PO4 1:3 solution is realized in order to provide

smoother waveguide sidewalls, so that propagation losses can be reduced. The

etching is highly anisotropic; ridge waveguides defined on the sample to be par-

allel to the [011] InP crystal plane result with a slight undercut as depicted in

Fig. 5.2(b), with ≈4◦-tilted sidewalls.
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Figure 4.2: Cross-section of ridge waveguide.

Inasmuch as this does not cause serious problems in the waveguiding char-

acteristics, Electron-Beam Lithography (EBL) alignment markers present on the

sample can be sufficiently altered to cause problems in the photonic crystal litho-

graphy step. These markers consist of ’L-’ or cross-shaped ridges of width 3µm

and length 20µm and are used as references for the location and alignment to the

mesas on top of which PC patterns are to be exposed. Fig. 4.3 shows one such

marker after the wet-etch. To circumvent this problem, markers are protected

with a thick (≈3µm) layer of AZ-4330 photoresist prior to the wet-etch. Acid

attack is thereby effectively avoided.
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Figure 4.3: SEM of e-beam write direct-write alignment mark and schematic of
ridge cross-sections in two perpendicular directions.

SiN and SiO2 Deposition

After ridges have been defined, a 100nm layer of SiN is deposited on the sample

to provide isolation for electrical contacts. A lithography step follows in which

mesa-tops are cleared of the SiN.

A 400-450nm layer of SiO2 is deposited, which will serve as a hard etch-mask

for the PC patterns. The large thickness of this layer is necessary due to the

highly agressive InP dry-etch step, especially since very deep holes are required.

Sample Planarization

At this point in the process flow, the sample surface is no longer planar, having

a 1µm depth variation. In order to ensure both electron-beam resist uniformity

and full coverage of all structures on its surface, the sample is planarized with

PMGI. The procedure is as follows: PMGI SF-11 is thrice spun at 4000 RPM and

baked on a hot plate at 200◦C. The sample is next baked in a convection oven at
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300◦C in an enclosed aluminum boat for 15 minutes. In general, the PMGI surface

presents variations of the order of 100nm after this procedure. Dry-etching in an

oxygen plasma follows until mesa surfaces are once again exposed. The ZEP-520A

photoresist is next spun on the surface prior to the electron-beam lithography.

Notice that the tolerance in the PMGI O2 plasma etch can become very strict

for thinner e-beam resists. In the present case, a resist thickness of 500nm was

chosen, which permitted the sample surface to vary within 200nm without serious

implications.

This planarization step was adapted from that developed by Aimin Xing for

fabrication of membrane-type PC on top of InP mesas, detailed in [2]. Very precise

(better than 100nm) alignment between PC patterns and etched waveguides was

ensured by the EBL direct-write alignment feature.

Photonic Crystal Lithography and Etching

Electron-beam lithography follows the previous step to define PC patterns on

top of the mesas. As mentioned above, alignment marks were used so that the

patterns could be aligned to the mesas with a tolerance of less than 100nm. After

development, the patterns are transferred to the SiO2 mask with a CHF3 plasma

in a Panasonic E640 Inductively-Coupled Plasma (ICP) etcher.

The sample is next etched in a Unaxis Versalock ICP etcher, using a Cl2:Ar

1:5 chemistry at 1.5mT and 200◦C. This etch was long enough to yield holes

extending through the upper cladding and waveguide layers, then about 1µm into

the substrate.

95



Electrical Contacts

A semi-self-aligned resist etch-back technique was used to create openings for

contacts on the remaining SiO2 and SiN layers on selected, lithographically-defined

portions of the ridge waveguides. This step is as follows: PMGI is spun and

planarized on the surface, followed by spinning of AZ4110 photoresist. Optical

lithography is used to define openings in the latter, on top of selected waveguide

regions. The AZ400K developer used does not attack the underlying PMGI layer.

Dry etching with oxygen plasma is next used to etch-back the exposed PMGI

regions until only the waveguide tops are exposed. The SiO2 and SiN on top of

the guides are finally etched in a CHF3 plasma.

Following these steps, metallic contacts were defined with contact photolithog-

raphy, using a dual-photoresist-layer scheme: PMGI SF-15 (resulting in a ≈ 3µm

thickness at 4000RPM spin speed) was first spun on the wafer surface and baked

at 200◦C for 2 minutes and deep-UV exposed for 100 seconds. The latter pre-

exposure step was to ensure the formation of a PMGI undercut. AZ4110 pho-

toresist was next spun on the surface at 4000RPM (≈ 1µm thickness), soft baked,

exposed and developed in AZ400K developer, which did not attack the PMGI

layer. UV-exposure of PMGI for 300 seconds followed, and development in SAL-

101 was carried out until the polymer was fully developed. This process in general

required repetition of the UV-exposure, development and inspection step to en-

sure a good development and undercut formation. Lithography was followed by

200/400/5000Å Ti/Pt/Au e-beam evaporation at a ≈ 45◦ angle for sidewall cov-
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erage. The sample was subsequently thinned down and metallization of the back-

side with 200/400/5000Å Ti/Pt/Au was performed before cleaving. A schematic

diagram of the fabricated structures is shown in Fig 4.4(a) and an optical micro-

scope image is shown in Fig 4.4(b)

(a)

(b)

Figure 4.4: (a)Top-view schematic of fabricated devices. (b) Top-view optical
microscope image of finalized devices.

4.3 Electron-Beam Lithography

Electron-beam lithography was realized using a JEOL JBX-5DII(U) system.

The machine was operated at a 50kV voltage in high-resolution mode, with a

beam current of 95pA. This offered a beam spot-size of ≈10nm and a minimum
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step-size of 2.5nm. The maximum writable field (without stage movement) was

80×80µm2. Larger field areas can be written, however field-stitching errors might

occur.

The system offers a direct-alignment feature that uses on-chip reference marks

for precise pattern location. Global reference marks are used for overall wafer

rotation corrections, and are in general widely spaced. Chip reference marks

located within an 80×80µm2 area surrounding the pattern-write regions are used

for precise pattern alignment. In principle, three chip marks can be used for

local rotation and gain corrections, yielding an alignment tolerance of better than

50nm. In the present case however only one chip mark was used, which yielded

a tolerance of better than 100nm. Chip-mark detection is realized previously to

each exposure. In the present work, global chip marks were 90◦ crosses composed

of 3×50µm2 ridges etched on the InP surface. Chip marks were L-shaped, formed

by 3×20µm2 ridges.

Due to the 2.5nm step-size limitation, circular patterns were approximated as

polygons whose vertices fell on a grid defined accordingly.

The lithography was realized with ≈500nm ZEP520A photoresist. This is a

high-resolution positive resist that is developed in 100% amyl acetate, followed by

methyl-isobutyl-ketone and isopropanol dips. The thickness was chosen based on

the etch selectivity of the long SiO2 mask etching step.
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4.3.1 Exposure Dose Calibration

Lithography calibration was carried out initially on plain InP samples covered

with a 450nm-thick layer of SiO2. The oxide was deposited using high-density

Inductively Coupled Plasma (ICP) Plasma Enhanced Chemical Vapor Deposition

(PECVD) in a Unaxis VLR system.

The calibration process was as follows: PC patterns were initially exposed with

various current doses on the sample surface. The resist was developed after expo-

sure, followed by etching of the SiO2 mask. Patterns on the hard SiO2 mask were

next transferred to the semiconductor and the mask was subsequently removed

with Hydrofluoric acid (HF). Inspection of the patterns was finally carried out

with a Field Emission Scanning Electron Microscope (FE-SEM). This instrument

was a Sirion FEI SEM, which offered a resolution of ≈2nm at an accelerating

voltage of 5kV.

The dimensions of the PC pattern features were measured from SEM-produced

images. For each pattern, hole diameter dimensions were normalized to the respec-

tive lattice constants, yielding reliable estimates for air filling fractions. Exposure

doses were associated with corresponding filling fractions. Subsequent calibration

runs were carried out with refined current dose modulations, based on the previous

results, to yield the desired feature sizes.
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Proximity Effect Correction

During electron-beam exposure of a particular region on the sample surface,

scattered electrons tend to add to the total exposure dose of neighboring areas.

This results in a non-uniform dose distribution that yields, upon development, to

a distorted version of the desired pattern [4, 5]. The level of distortion clearly

Figure 4.5: Dose map for proximity effect correction. Holes close close to the
pattern edges tend to receive lesser effective doses, thus Dose 1 > Dose 2 > Dose 3.

depends on the proximity between the different exposed regions: closely-spaced

shapes will be affected by each other’s exposure doses. This effect is particularly

detrimental to photonic crystal waveguides since a large hole-size non-uniformity

may result: holes surrounded by many neighbors (i.e. at the waveguide center)

will end up with much larger diameters than those at the pattern edges. As

predicted in Chapter 3, even slight variations in hole size may cause very large

band-structure frequency shifts and thus must be avoided. In order to circumvent

this effect, a modulation of exposure doses assigned to holes in different region
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of a pattern was realized. Figure 4.5 illustrates this procedure. The calibration

(a)

(b)

Figure 4.6: Top-view SEM images of photonic crystal patterns (a) without and
(b) with proximity effect correction. In (a), holes in the center of the pattern have
collapsed into each other.

of the dose modulation was carried out by exposing multiple copies of the same

pattern with dose distributions departing slightly from the original, followed by

development, etching and SEM inspection. This process yielded a hole-size uni-

formity of above 90% to be achieved. Figures 4.6(a) and 4.6(b) clearly show the
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benefit of proximity effect correction. Modulation of individual hole-pattern sizes

and doses also allowed the realization of PC waveguide sidewall tapers, as shown

in Fig. 4.7.

Figure 4.7: Tapered-wall photonic crystal waveguide created with modulation
of both hole-pattern size and exposure dose.

The present approach to proximity-effect correction is somewhat rudimentary

and incomplete, however it yields reasonable PC uniformity in a fast way. More

involved and complete methods have been developed involving mathematical for-

mulations of the proximity effect and dose-compensation algorithms [6, 7, 8]. The

dose compensation in such cases is realized at each exposure point and is generally

shape dependent, leading to a much higher level of fidelity and uniformity.
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4.4 High Density Plasma Etching

Plasma-etching processes are expected to be mostly driven both by ion bom-

bardment of the sample surface and chemical reactions with generated radicals.

Control of the physical and chemical components of the etching process can un-

der these circumstances be realized by the control of radical and ion concentra-

tions available in the chamber. In simple gas-discharge plasma processes (for in-

stance, reactive ion etching [5]), the concentrations of these two groups of chemical

species are generally very small with respect to the gas volume, a characteristic

which limits both the etching throughput and flexibility. In order to overcome

these limitations, a few different techniques have been successfully developed for

the generation of high density plasmas (i.e. with ion concentrations exceeding

1011cm−3) that could be tuned with many degrees of freedom, generally offering

much improved etch-rates and feature quality. Added advantages are the possibil-

ity of operation of the plasma reactor at very low chamber pressures (<10mtorr)

and low electrode DC biases. Two popular high-density plasma generation tech-

niques are Electron-Cyclotron Resonance (ECR) and Inductively Coupled Plasma

(ICP), both of which make use of transverse electric and magnetic fields in or-

der to increase the amount of collisions experienced by charged particles in the

plasma.

The first technique consists in using a static magnetic field and an alternating

electric field set at the electron cyclotron resonance condition, such that electrons

are set in very efficient circular motion within the plasma. In the second technique,
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Figure 4.8: Schematic of Inductively Coupled Plasma (ICP) etching chamber.

the plasma is driven by a magnetic potential set up by a coil wound outside

dielectric chamber walls. Coil and plasma are inductively coupled in a similar

way as the two sides of an electrical transformer [9] so that part of the RF power

applied to the coil is delivered to the plasma. A schematic of the reactor is

shown in Fig. 4.8. Two independent power supplies are used in the system: a low

frequency supply is used to generate a high-density plasma above the surface of

the wafer; a high frequency supply provides wafer bias, driving ions towards the

substrate. Considerable etch rates at low DC bias (i.e. low ion energies), resulting

in low wafer damage are thereby obtained.

Two ICP etching systems available at the UCSB fabrication facilities were

used to perform the photonic crystals dry etching steps for the present work.

A Panasonic E640 system was used for etching of the thick, 450-nm SiO2 etch-

mask after the EBL step, with a CHF3 plasma. A Unaxis Versalock system was

next used for Cl2-based etching of the InP. Both etches used very low pressures
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to ensure sidewall straightness and sufficient etch-depth, as well as high plasma

excitation.

4.4.1 SiO2 Mask Etching

Etching of InP in a high-density Cl2 plasma requires a hard mask for pattern

definition. In the present case, a high-density, ICP PECVD-deposited film of SiO2

was used for this purpose, which offered an appropriate degree of selectivity for

deep hole etching in InP; moreover, the available deposition process was reliable

and easy to use. The required film thickness was nevertheless considerably large

(≈450nm), thus use of a high-density plasma etching technique became necessary.

The SiO2 mask was etched in a CHF3 plasma with a Panasonic E640 ICP etcher

under the following conditions: 0.25 Pa chamber pressure, 900W ICP power,

200W RIE power and 40sscm CHF3 flow. The etch-rate achieved was approached

2.5nm/s with a selectivity of ≈1.4. Sidewalls presented a 3-5◦ tilt, as depicted in

Fig. 4.9. Notice in the picture that the InP substrate seems to be slightly etched;

this is a result of sputtering by high-energy plasma particles. A good etch-time

calibration is thus necessary to avoid excessive sputtering and sidewall roughness

due to photoresist degradation. This recipe departed from a pre-existing version

that yielded sidewall-angles between 4◦ and 5◦ at an etch-rate of 3.9nm/sec and a

selectivity of 1.35, with 40sccm CHF3 flow and 400W power. The faster etch-rate

is due to the increased RIE power. This is also most likely the reason behind the

rougher sidewalls observed in Fig. 4.10(a), as compared to the sidewalls obtained
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Figure 4.9: Cross-sectional SEM image of SiO2 ridges etched with P=0.25Pa,
PICP=900W, PRIE=200W, QCHF3

=40sccm.

with the final recipe, shown in Fig. 4.10(b). Worse resist degradation was also

observed, which might have had a significant contribution to sidewall roughness.

The top-view SEM image of the etched holes shown in Fig. 4.11 illustrate the high

sidewall smoothness provided by the etching recipe.

The 3◦-5◦ SiO2 mask sidewall angles caused InP-etched holes to be considerably

smaller than the exposed patterns: for a 450-nm-thick mask layer, hole diameters

were between 40nm and 80nm smaller at the InP surface than at the top SiO2

mask surface.

4.4.2 InP Etching

The stringent PC hole depth requirement demanded the use of Chlorine chem-

istries for InP etching, which have been shown to produce large etch-rates and

features with very high aspect-ratios [3], [10]. The introduction of different gaseous
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(a) (b)

Figure 4.10: Cross-sectional SEM image of SiO2 ridges etched with (a)P=0.25Pa,
PICP=900W, PRIE=400W, QCHF3

=40sccm and (b) same conditions as in Fig. 4.9.

Figure 4.11: Top-view SEM image of etched holes with the recipe from Fig. 4.9.

species -such as Ar or N2- permits better control over the balance of chemical and

physical components of the etching process, which will reflect upon etch-rate and

feature quality.

In general, high substrate temperatures (≥200◦) are necessary for the equaliza-

tion of desorption rates of In- and P- reaction products in the Chlorine plasma 1.

1Indium compounds (InClx, x=1..3) are to be considerably less volatile then Phosphorus
products (PClx x=1..5).
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High temperatures are also required to avoid differential etching of InP and Ga-

containing epi-layers. The etch-rates of InP and GaAs in Cl2 have been shown to

differ considerably at temperatures lower than 175◦ [11]. Another form of deal-

ing with the differential desorption rates is by increasing the physical sputtering

component of the etch process with high-energy ions. Desorption of InCl3 can be

enhanced by increased plasma densities, as described in [3].

Low pressures (<10mTorr) are in general required for the achievement of

deeply etched high aspect-ratio holes. As holes deepen during the etch process,

transport of reactive species into the cavities becomes less efficient, as well as

the removal of reaction products; in addition, reaction products tend to be re-

deposited on the hole sidewalls. These effects cause etch-rate reduction and in

general result in holes with tilted sidewalls and limited depth, depending on the

aspect-ratio [12]. It may be argued that the benefits of low pressure in high

aspect-ratio feature etching are related to the larger mean-free-paths of the re-

active species, which would result in a smaller spread in the incidence angle of

radicals and ions upon the substrate. Low pressures however are also usually as-

sociated with an increased bias voltage build-up between plasma and substrate,

which cause ions to strike the sample surface in with higher energies. This would

constitute an equally important factor for the achievement of high aspect-ratios.

Two different chemistries were investigated for InP etching: a Cl2:N2 mixture

and a Cl2:Ar mixture. The former produced smooth sidewalls, however with

a considerable tilt angle, which resulted in limited hole depth. The chemistry
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produced rougher and irregular sidewalls, however extremely deep holes, with a

much better selectivity than in the previous case.

Cl2:N2 Chemistry

Achievement of smooth sidewalls depends on the enhancement of InClx etch-

product desorption with respect to the desorption rate of PClx. The introduction

of N2 leads under specific conditions to a reduction in Cl radical density which

limits the formation and desorption of PClx; non-volatile compounds such as InCl2

and P are produced in this case [13].

Increased levels of N2 in the mixture may additionally lead to reduced PClx

formation due to the formation of non-volatile P3N5 [14]. A cross-sectional SEM

image of ≈ 6-aspect-ratio PC holes etched at 200◦C with a 12:28 Cl2:N2 mixture

in an 8-mTorr-pressure environment with 500W ICP power and 200W RIE power

are shown in Fig. 4.12. Extremely smooth sidewalls are achieved with this recipe,

however with a limited hole depth of 2.0µm and a large tilt angle. These features

are most likely related to the formation of non-volatile compounds. The top-view

SEM image of the etched holes shown in Fig. 4.12(c) illustrate the high sidewall

smoothness provided by the etching recipe.

Cl2:Ar Chemistry

The introduction of argon in the etching mixture adds a considerably stronger

physical etching component that allows achievement of holes with very high aspect-

ratios in detriment of sidewall smoothness. In this case, an enhanced desorption
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(a)

(b)

(c)

Figure 4.12: (a) Cross-sectional SEM of photonic crystal holes etched with P =
8mTorr, PICP=500W, PRIE=200W, Cl2:N2 12:28sccm. (b) Detail of (a). (Pictures
courtesy of Aimin Xing.) (c) Top-view SEM image of etched holes with the same
recipe.
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rate of low-volatility InCl3 can be achieved with high substrate temperature, low

pressure and high plasma density [3].

Figure 4.13: Cross-sectional SEM of PC holes etched in an InP substrate with
a Cl2:Ar 1:5 mixture at T=200◦C, P=0.25Pa with PICP=900W, PRIE=200W.

Figure 4.13 shows PC holes etched at 200◦C with a 1:5 Cl2:Ar mixture in an

1.5-mTorr-pressure environment with 900W ICP power and 200W RIE power. In

order for the chamber pressure to be maintained at a stable position, the actual gas

flows used were QCl2= sccm and QAr = sccm. A 3.2µm hole depth with as aspect-

ratio of ≈12 was achieved over an etching time of 160s; etch-rate and selectivity

with respect to the SiO2 mask were ≈20nm/sec and ≈ 10 respectively. Notice

however the increased sidewall roughness and non-uniformity in comparison to

the N2-etched holes. This can also be observed from the top-view SEM of the

etched holes shown in Fig. 4.14.

Despite the roughness and sidewall non-uniformity, the present recipe was used

to etch holes with depth larger than 2µm, as required for the complete overlap of
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the epi-structure fundamental slab mode. The profile of holes etched on epitaxial

material can be seen in Fig 4.15. Notice that holes extend through top InGaAs,

InP top-cladding, InGaAsP guiding layer and about 1µm into the substrate. The

experimental results provided in Chapter 6 demonstrate that the incurred-upon

hole imperfections were sufficiently small to yield clearly distinguishable photonic

band-gap effects.

(a) (b)

Figure 4.14: (a) Top view of PC holes etched with the recipe from Fig. 4.13.
(b) Detail of (a).

Figure 4.15: Cross-sectional SEM figures of PC holes etched on the epi-structure
from Fig. 4.1 with the recipe from Fig. 4.13
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4.5 Summary and Conclusions

A fabrication process was developed that allowed the incorporation of deeply

etched Photonic Crystals in InP Photonic Integrated Circuits based on a pre-

existing integration platform [1]. Fabricated structures include weakly confining

ridge waveguides that can be electrically pumped and photonic crystals patterns

composed of holes of more than 2µm deep.

Electron-beam lithography was used for the definition of PC patterns, with

proximity-effect corrections to ensure low shape distortions.

High-density (inductively-coupled) plasma etching with two different chlorine

mixtures was investigated to produce extremely high aspect-ratio holes with diam-

eters of less than 200nm. A Cl2:N2 mixture was found to produce holes with very

smooth sidewalls however with insufficient depth and considerable sidewall tilts.

A Cl2:Ar mixture was finally established that produced the desired hole depth,

however with a higher level of sidewall roughness and non-uniformity. This recipe

was used for deep hole etching of the final devices.
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Chapter 5

Photonic Crystal

Characterization Technique

5.1 Introduction

This chapter describes the experimental techniques used to characterize the

passive deeply etched photonic crystal structures presented in this work. A de-

scription of test devices fabricated for passive testing is given initially. Next,

modal analysis of the slab waveguide formed by the epitaxial wafer is carried

out, followed by modal analysis of the access ridge waveguides. Theoretical and

practical aspects of the measurement technique are then detailed, which makes ex-

tensive use of Müller matrices. Finally, an important aspect of fiber-to-waveguide

coupling is analyzed regarding multi-mode propagation in the access waveguides

of the test structures.
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5.2 Test Devices

Based on the fabrication platform described in Chapter 4, a series of 20µm-

wide mesas were realized with lengths of 10, 30 and 80µm , on top of which PC

patterns were to be etched. The mesas were accessed via input and output 3-µm-

wide weakly guiding ridge waveguides. These were flared to a width of 5µm close

to the cleave-planes of the wafer and designed to meet the edges at a 7◦ angle, in

order to suppress reflections into the fundamental mode at the semiconductor/air

interface [1, 2]. The total length of the devices after final cleaving was expected

to be between 1400µm and 1600µm. A schematic of the test-devices is shown in

Fig. 5.1.

Figure 5.1: Schematic of the devices used for PC characterization.

As described in Chapter 4, the basic epitaxial structure of the devices encom-

passed an InP substrate, a 300-nm intrinsic InGaAsP guiding layer, a 1-µm InP

cladding layer and a 100nm contact layer of highly p-doped InGaAs. A schematic

of a ridge waveguide is shown in Fig. 5.2(a), next to a cross-section SEM image

of a fabricated guide.
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(a) (b)

Figure 5.2: (a) Cross-sectional schematic of ridge waveguide showing the epitax-
ial layers. (b) Cross-sectional SEM of an access ridge waveguide. All dimensions
are relative to the slab waveguide thickness.

Electrical contacts were defined on the ridge waveguides such that guided

light could be detected by measuring current from reverse-biased p-i-n junctions.

This facilitated the coupling of ridge waveguides with lensed fibers during the

testing process; optimal alignment is in fact achieved in little more than a minute,

requiring no equipment other than a voltage source with a built-in amp meter.

5.2.1 Modal Analysis of Mesas and Access Waveguides

For subsequent design and analysis, modal analysis of the epi-structure and

ridge waveguides is now carried out.
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5.2.2 Slab Waveguide Modeling

The refractive index of the 1.37Q InGaAsP layer was considered to vary be-

tween 3.4 and 3.45 within the optical communications wavelength range. The

refractive index of the InP regions was considered to be 3.17, and that of the

InGaAs region 3.65 [3].

Based on SEM pictures of waveguide cross-sections (see for instance Fig.

5.2(b)), the actual quaternary layer thickness was estimated to be between 350nm

and 370nm; the thickness of the top InP cladding and the InGaAs layers were then

all estimated based on this measure, as well as the ridge waveguide width. It must

be pointed out that the thickness of the grown InGaAs layer turned out to be con-

siderably larger than the initially desired 100nm, which might have led to the

existence of an additional undesired TE slab propagating mode, as detailed below.

A 1D Finite-Element Method was used to calculate modes of the multi-layer

slab waveguide formed by the epi-structure, assuming zero losses in each layer. A

schematic of the slab structure is shown in Fig. 5.3.

The slab waveguide offers two guided modes, one in which light is mostly

confined in the quaternary layer (henceforth quaternary mode), another confined

in the contact layer (henceforth contact-mode). The top cladding is thick enough

that the contact layer has little effect on the quaternary mode effective index;

on the other hand, the quaternary layer refractive index and thickness largely

influences the conduction mode. Figures 5.4(a) and 5.4(b) show the indices of
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Figure 5.3: Schematic of slab waveguide formed by the epitaxial structure.

TE guided modes for the extremal values of the guiding-layer refractive index and

thickness (nQ and hQ respectively) as functions of wavelength.
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Figure 5.4: Effective refractive indices for quaternary- and contact-modes of the
slab waveguide in Fig. 5.3 with (a) hQ = 0.3 (b) hQ = 0.35.

Given the uncertainty in the actual material parameters, the TE fundamental

mode effective index is assumed in the next chapters to be between 3.25 and

3.3, based on range of values obtained. At the same time, the existence of a

conduction-layer mode with effective indices between 3.17 and 3.23 is admissible.
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It must be noted though that the contact layer and top cladding are highly p-

doped, which will result in large losses for contact-modes. In practical terms, it is

expected these not play an important role in the characteristics of the measured

devices.

The electric-field amplitude of two TE quaternary modes calculated for the

extremal values of hq and nq are shown in Fig. 5.5(a) and 5.5(b). It is apparent

from Fig. 5.5(a) that if the confinement provided by the quaternary layer is low

enough, the field presents a reasonable amplitude within the contact layer. Ap-

proximately 0.08% of the total power is contained in the contact region in the

case depicted; nevertheless, this mode is expected to experience large propagation

losses, given the high conductivity in the contact layer.

An overlap integral between the field and air holes extending down to positions

y is also plotted in the figures. In both cases, the overlap is almost complete for

y < −1.1µm. Considering the thickness of the top cladding and contact layer in

the hQ = 0.35µm case, the required hole depth would be ≈ 2.5µm for complete

overlap.

Similar calculations for TM polarization resulted in a fundamental (quater-

nary) mode effective index between 3.25 and 3.28. No TM contact-modes were

found.
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Figure 5.5: Electric field amplitude-square for fundamental TE modes of slabs
with (a)hQ = 0.30,nQ = 3.4; (b)hQ = 0.35,nQ = 3.45. The shaded regions
correspond to the different slab layers.

5.2.3 Ridge Waveguide Modeling

Modal calculations based on a semi-vectorial 2D Beam-Propagation Method

(RSoft Beamprop) were carried out considering the maximum and minimum esti-

mated values of quaternary refractive index and thickness. The method generated

quasi-TE and quasi-TM solutions of the eigenvalue equation for the major com-

ponents of the electric and magnetic field in each case.

Once again, the relative dimensions of the top cladding and InGaAs layer, as

well as the waveguide width with respect to the quaternary layer were obtained

from SEM images. The simulated structure resembled that shown in Fig. 5.2(a),

considering hQ and hC to be the thicknesses of InGaAsP and InGaAs layers re-

spectively and 3.40 ≤ nQ ≤ 3.45 the quaternary refractive index. The waveguide

carries 2 quaternary TE modes, examples of which are depicted in Fig. 5.6(a)

and 5.6(b). No contact modes were found. Effective index curves for the two
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(a) (b)

Figure 5.6: Fundamental (a) and first-order TE mode field profiles (Ex compo-
nent) for waveguide with hQ = 0.35, nQ = 3.45.

waveguide modes are plotted in Figs. 5.7(a) and 5.7(b) for extremal values of nQ

and hQ. Given the uncertainty in the actual wafer parameters, the zero-order

mode effective index is henceforth considered to be 3.246< nTE,00 <3.30, and

the second-order index 3.215< nTE,01 <3.274. Similar calculations were used to

obtain 3.237< nTM00
<3.284 and 3.20< nTM01

<3.26 for TM modes.
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Figure 5.7: Effective refractive indices for the slab waveguide in Fig. 5.3 with
(a) nQ = 3.4 and hQ = 0.3 (b) nQ = 3.45 and hQ = 0.35.

124



5.2.4 Facet Reflectivity

Angled facets have long been employed in Traveling-Wave Semiconductor Op-

tical Amplifiers (TW-SOA) to reduce the modal reflectivity at the semiconductor-

air interfaces [1, 2]. In general, this technique is used in conjunction with Anti-

Reflection (AR) coatings to yield reflectivities below 10−4. It has been shown,

though, that properly angled and tapered uncoated facets may yield reflectivity

levels below 10−3[2]. In the present work, no AR coatings were used.

An analytical expression for the effective reflectivity at a tilted facet is, con-

sidering the waveguide mode to closely resemble a Gaussian [1],

Rang(θ) = Rf (θ) exp

[

−
(

2πn2wfullθ

λ0

)]

(5.1)

where θ is the angle between the incidence direction and the facet normal and Rf

is the Fresnel reflectivity between two media with indices n1 and n2,

Rf (θ) =
n1 cos(θ) −

√

1 − n2
1 sin2(θ)

n1 cos(θ) −
√

1 − n2
1 sin2(θ)

. (5.2)

The reflectivity tends to decrease with increasing θ, however coupling efficiency

to optical fibers decreases at large angles due to far-field beam asymmetry[1]. In-

creasing the waveguide width also contributes to reducing the effective reflectivity,

however this might lead to the existence of high-order modes. Optimal angles for

waveguide widths between 3µm and 5µm lie between 7◦ and 10◦.

FDTD simulations were realized to probe the dependence of facet angle and

waveguide width on the modal reflectivity. The waveguides considered were 2D

effective-index approximations of the ridge waveguides above, considering widths
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of 3µm and 5µm. The simulation consisted of launching a zero-order mode into

waveguides with facet angles varying between 0◦ and 12◦. Perfectly Matched

Layers (PML)[4] were used to absorb outgoing waves. The excitation was CW at

λ = 1.50µm and lasted long enough so that the the total reflected power (averaged

over one wave-period) reached steady-state. The reflected field at the waveguide

input was saved and the modal power for zero-order and first-order modes was

subsequently obtained, normalized to the total reflected power. Figures 5.8(a)

and 5.8(b) show the zero- and first-order mode reflectivities for waveguides of

widths 3µm and 5µm. As it appears, the zero-order-mode reflectivity reaches the

-30dB level at a lower angle in the second case. The zero-order reflectivity into

the first-order mode is considerable in the 3-µm case, reaching the -30dB level at

θ > 8◦; the reflectivity is more favorable in the 5-µm case, especially considering

that high-order modes tend to have larger propagation losses.
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Figure 5.8: Modal reflectivity for the fundamental and first-order modes for
waveguide widths of (a) 5 µm (b) 3 µm.
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Overall, it appears that a wider waveguide presents advantages in terms of facet

reflectivity, with respect to both zero- and first-order modes. As such, a tapered-

waveguide scheme was adopted in the design of the present test-structures, such

that access waveguides would be tapered from 3µm to 5µm close to the cleave

planes of the samples. The facet angle was chosen to be 7◦. With this, it was

expected that low facet reflectivities would be achieved, while maintaining a lower

number of bound modes elsewhere away from the facets.

It must be noted that, given the 7◦ facet angle, the output beam was expected

from Snell’s law to exit the device at an angle of roughly 23◦ with respect to the

facet. This means that in the experimental procedure, lensed fibers were tilted by

this angle with respect to the sample facet so that coupling could be maximized.

5.3 Measurement Setup

An Agilent 81910 All-Parameter Analyzer was used to characterize the de-

vices. The measurement system consists of a tunable, low-noise laser source to-

gether with a polarization controller and a set of high-speed photodiodes[5]. A

schematic of the 81910 is presented in Fig. 5.9. A polarization controller after

the tunable laser allows the instrument to record the polarization state being fed

to the instrument. The polarization splitters allow for polarization-sensitive de-

tection. Müller or Jones Matrices can be obtained using standard algorithms by

making use of these features [6, 7].
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The optical paths inside the instrument form Mach-Zehnder interferometers

(either in transmission or reflection mode), including the device under test in one

of the arms. This allows the instrument to obtain group delay measurements,

based on a technique called swept-wavelength interferometry [5]. In addition, it

is possible to obtain the absolute phase term for Jones Matrices [8].

Figure 5.9: Schematic of the measurement instrument.

Coupling to the fabricated devices was done by aligning lensed fibers to the in-

put and output waveguides; electrical contacts were biased at -2V with a Keithley

2400LV sourcemeter, and the photocurrents produced by a 0.8-mW optical signal

at 1520nm were on the order of 15 A. At each measurement, after the alignment

was optimized, the bias voltage was set to zero so light would suffer no extra

absorption in the waveguide.

The measurement setup was built such that the sample could be rotated around

its normal direction, thus allowing the beam incidence angle to be tuned, as

depicted in Fig. 5.10.
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Figure 5.10: Schematic of fiber alignment to the cleaved facet.

5.4 The Müller Matrix Method

Müller matrices fully characterize polarization-dependent transmission through

an optical system at fixed wavelengths, relating input and output polarization

states. Their use in the present work allowed for a straightforward discernment

of TE- and TM-polarized wave transmission from a single measurement run. A

detailed account of Müller matrices and their properties and applications can be

found in [6], however rudiments of their utilization in the context of the present

work are presented next.

Stokes Vectors

The power and state of polarization of an optical wave can be represented by

a 4-element vector denominated a Stokes vector:

S =

[

S0 S1 S2 S3

]

(5.3)

The S0 component of a Stokes vector carries the wave intensity, while the remain-

ing components are related to its polarization state. The S1 component describes
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linear horizontal (S1 > 0) or vertical (S1 < 0) polarization; the S2 component

describes linear +45◦ (S2 > 0) or −45◦ (S2 < 0) polarization; the S3 component

describes right-hand circular(S3 > 0) or left-hand circular (S3 < 0) polarization.

Any polarization state on the Poincaré sphere can be described in this fashion [6].

Notice that the total power can be partially unpolarized, such that in general

S2
0 ≤

3
∑

i=1

S2
i , (5.4)

the equality being valid when the wave is completely polarized.

Müller Matrix

The Müller matrix of an optical system relates two Stokes vectors describing

waves incident and scattered therefrom in the following way:

Sout = M · Sin (5.5)

M is a 4×4 matrix whose elements can be obtained through a procedure involving

polarization-discriminating measurements of wave intensities at the output of the

system, upon incidence of waves of specific known polarization states [6, 7]. A

procedure to obtain the essential components of the Müller matrix is shown in

[7].

Principal States of Polarization

The maximum and minimum transmitted powers over all polarization states

can be shown to be given by [6, 7]:

Tmax,min = m11 ±

√

√

√

√

4
∑

i=2

m2
1i (5.6)
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The input States Of Polarization (SOP) at which maximum and minimum trans-

mitted power are achieved are called the Principal States of Polarization (PSP)

and can be extracted from the Müller matrix. Consider the unit-power PSP in

the form S = [1 s±,1 s±,2 spm,3
]. Then

s±,i = ± m1(i+1)
√

∑4
j=3 m2

1(i+1)

, (5.7)

where the subscripts + and − are related to the maximizing and minimizing cases

respectively. The above relationship is derived in [7].

It is important to note that the 81910 produces one Müller matrix at each

wavelength within its measurement span.

Polarization-resolved Measurement of Test Devices

In the class of devices studied in this work, wave propagation can be quite well

described in terms of two complementary polarization states: TE and TM, as if

the devices were truly two-dimensional 1. In the first case, the electric field only

has components on the plane of the wafer (and no components in the propagation

direction), the same being valid for the magnetic field in the latter case.

Consider the measurement of the transmission characteristics of one of the

test structures described in Section 5.2. Under special conditions, the PSPs of the

device can be shown to closely coincide with its TE- or TM polarizations. These

conditions are exposed next.

1In reality, these quasi-2D structures support hybrid vector modes with very small longitudi-
nal electric or magnetic field components. Nevertheless, quasi-TE and TM modes can be safely
identified with pure two-dimensional TE or TM modes [3].
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The PDL of an optical system is defined as 10 log(Imax/Imin), where Imax

and Imin are the maximum and minimum measured intensities with respect to

the input polarization. The output electric field for a given device at a fixed

wavelength in Jones Matrix notation is:

Eout =









jTE 0

0 jTM









·









cos(θ) · exp(+iφ/2)

sin(θ) · exp(−iφ/2).









(5.8)

In Eq. 5.8, the first and second elements in the Jones vectors correspond respec-

tively to the TE and TM polarizations of the device; the angles 0 ≤ θ ≤ π/2 and

φ determine the relative amplitude and phase of the two components. The power

at the output is proportional to

|Eout|2 = |jTE|2 ·
[

cos2(θ)+

∣

∣

∣

∣

jTM

jTE

∣

∣

∣

∣

2

· sin2(θ)+ (5.9)

ℜ{jTEjTM}
|jTE|2

· cos(φ) · sin(2θ)

]

For very small |jTM/jTE|, the second term inside the brackets can be ignored,

leaving an expression that can be maximized or minimized when θ satisfies

tan(2θ) = 2
ℜ{jTEjTM}

|jTE|2
· cos(φ) ≤ 2

∣

∣

∣

∣

jTM

jTE

∣

∣

∣

∣

. (5.10)

Since |jTM/jTE| is small, the maximum and minimum output powers will be found

respectively at θ ≈ 0 and θ ≈ π/2 , corresponding approximately to purely TE-

and TM-polarized vectors.

In summary, the PSPs of a test device will be aligned with its TE or TM po-

larizations whenever a large PDL is observed. In general, the tested devices show

a considerable degree of PDL variation along the full measurement wavelength
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span; large PDL is most times observed within specific wavelength ranges only.

Nevertheless, TE- or TM- transmission curves for the entire wavelength span can

be obtained once the the assumption is made that the SOP at the tunable source

output 2 are wavelength-independent and so is the degree of polarization rotation

along the fibers connecting instrument and device. In this case, the PSPs at a

high-PDL wavelength can be obtained and re-applied to the Müller matrices at

all other wavelengths to yield TE and TM transmitted powers.

To verify the validity of this assumption, the power transmission spectra for

a single-line-defect photonic crystal waveguide was analyzed using the technique

described above. The waveguide displayed a photonic band-gap for TE modes

for wavelengths above λ ≈ 1.6 and no TM-mode band-gap. Figure 5.11 shows

the obtained maximum and minimum power transmission curves Tmax and Tmin,

the PDL and the vector components of the maximizing PSP, s+,i, i = 1, 2, 3.

The PDL reaches values above 20dB for λ & 1.6µm, where the TE band-gap is

found. The Tmax and Tmin curves meet at λ0 ≈ 1.587µm, where PDL(λ0) ≈ 0.

Notice that the maximizing PSP remains roughly constant everywhere except in

the vicinity of λ0; also, it appears to change abruptly from one state to another

at this point. At shorter wavelengths than λ0, the TE polarization maximizes

transmission; at longer wavelengths, the TM polarization does. It is apparent

the SOP of the tunable laser output is independent of wavelength and so is the

polarization rotation experienced though the fiber path connecting the instrument

to the devices. Of course, the fiber paths should be kept fixed in position as much

2Actually, at the output of the polarization controller that follows the tunable source.
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Figure 5.11: Power transmission, PDL and power-maximizing PSP vector com-
ponents for a single-line-defect PC waveguide.

as possible during each set of measurements, so that approximately the same

states of polarization are being launched each time.

Applying the PSP at λ = 1.62µm to the Müller matrices at all other wave-

lengths produces the TE and TM curves shown in Fig. 5.12(a). The same done

with a PSP at λ = 1.5 yields the curves in Fig. 5.12(b). Notice that the two sets of

curves are very similar, despite the fact the PDL in the first case was 10dB higher

than in the second. The difference between the two cases in fact remained below

10% except in the bandgap region for TE modes, where the amplitude becomes

extremely low. This seems to indicate that PDL& 10dB still generates acceptable

curves.
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Figure 5.12: TE and TM power transmission for the single-line-defect waveguide
using respectively (a) maximizing and the minimizing PSP at λ = 1.62µm and
(b) minimizing and maximizing PSP at λ = 1.50µm.

5.5 Jones Matrices

Jones matrices provide an alternative way of describing polarization-related

phenomena, being closely related to the Müller matrices. The SOP vectors in

this case are complex and two-dimensional, as opposed to real and 4-dimensional

in the previous case; a Jones matrix, as a result, is 2× and complex. The Jones

vector components relate to two reference (not necessarily perpendicular) axes [9],

their relative magnitures and phases describing a particular SOP. Notice that this

formulation does not allow for the description of unpolarized or partially polarized

light.

The Jones matrix of an optical system can be obtained experimentally through

a series of polarization-resolving measurements with specific exciting SOPs [8, 10,
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11]. The resulting matrix is in the form

M = β









k1k4 k2

k4 1









, (5.11)

where k1, k2, k4 are normalized quantities directly obtained from the measure-

ments. The β term describes both absolute amplitude and phase of the system;

determination of the absolute amplitude can be straightforwardly obtained from

the k-parameters:

|β|2 =
T1

|k4|2(1 + |k1|2)
=

T2

1 + |k2|2
, (5.12)

where T1 and T2 are measured in the k-value determination steps [8]. Determina-

tion of the absolute phase is more involved, in general requiring an interferometric

experiment whereby relative fringe displacements can be measured. In the 81910,

this is in fact realized by analysis of fringe patterns from the built-in Mach-Zehnder

interferometer.

Principal States of Polarization

The PSPs of an optical system can be computed from its Jones matrix in the

following way. Let H be a 2× 2 matrix and s a general Jones vector. Next define

the inner product (s, s) = s∗T · s2 and consider (s, s) = 1. If H is Hermitian, it is

straightforward to show that the quantity f = (Hs, s), called the field-of-values

of H, is bounded within the Real interval λ1 ≤ f ≤ λ2, where λ1,2 are eigenvalues

of H 3. The transmitted power of a system described by a Jones matrix J can be

3Since H is hermitian, its eigenvalues are real.
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expressed as

T = (Js, Js) = (J∗T Js, s). (5.13)

The matrix H = J∗T J is Hermitian. The transmission T above is the field-of-

values of H; thus finding the maximal and minimal transmitted powers and their

corresponding PSPs requires simply finding the eigenvalues and eigenvalues of H.

What is more, its eigenvalues λi, i = 1, 2, correspond to the singular values of

the Jones Matrix J 4 which can be proved to be invariant under unitary transfor-

mations [12]. This means that the polarization rotation introduced by anything

(i.e. optical fibers) in the paths between source and system and system and de-

tector do not alter the results, as far as maximum and minimum transmission are

concerned.

Group Delay and Differential Group Delay

Consider the Jones vector y obtained from a unitary Jones vector x̂:

y(ω) = J(ω)x̂(ω) = y(ω)eiφ(ω)ŷ(ω), (5.14)

The frequency dependence of the matrix and vectors has been made explicit.

Differentiating this with respect to ω, the following expression is obtained:

yω = Tωx̂ =

(

yω

y
+ iφω

)

y + yeiφŷω. (5.15)

If y is an output PSP of the system 5, it can be shown to be invariant to first

order with respect to ω [13]. As such, the second term on the right can be set

4The singular values σi of a matrix J are defined such that σ2

i is the i-th eigenvalue of J∗T J .
In mathematical formulation, σ2

i = λi{J∗T J}.
5x̂ would then be an input PSP.

137



to zero. The term τg = φω is the group delay of the PSP described by ŷ. Since

x̂ = J−1ŷ (considering J non-singular), from Eq. 5.15,

yeiφŷω = 0 =

[

JωJ−1 −
(

yω

y
+ iτg

)]

. (5.16)

Thus the imaginary parts of the eigenvalues of JωJ−1 correspond to the group

velocities of the two PSPs of the optical system. The PSPs can thus be identified

with the fast and slow axes of the system, depending upon their respective group

delays.

Group Delay (GD) is defined as GD = (τg,max + τg,min)/2, while Differential

Group Delay (DGD) is defined as DGD = |τg,max−τg,min|. The Polarization Mode

Dispersion (PMD) of the system is a vectorial quantity obtained by multiplying

the DGD to the (unitary) slow input PSP vector.

It must be noted that the two group delays can only be found independently

if the absolute phase of the system is known. If this is not possible, GD and DGD

can still be obtained from an approximation to Eq. 5.16, as described in [11].

5.6 Fiber-to-Waveguide Coupling

Due to the multi-mode nature of the ridge waveguides, power coupling into

high-order modes can occur to significant levels upon excitation with a lensed

fiber. This becomes an issue when tilted waveguide facets are employed such as

described in section 5.2.4, since beam incidence at an ≈ 23◦ angle with respect

to the facet is required for optimal power collection. Departure from the optimal

collection angle leads to coupling into the high-order mode. This can be shown
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by a series of FDTD simulations based on the scheme in Fig. 5.13. The procedure

consists of launching a Gaussian 7◦-tilted semiconductor facet at varying angles

and measuring the power coupled to individual waveguide modes. In the present

case, the Gaussian beam waist was considered to be 5µm at a distance of 1µm

from the center of the waveguide. This choice was made since the lensed fiber

used in the experiments had been specified with a 5µm spot-size. The waveguide

width was 5µm.

Figure 5.13: Schematic of simulated structure.

Figure 5.14 shows the power coupled to the fundamental and first-order modes

with respect to the total power immediately inside the semiconductor medium.

Clearly, the optimum incidence angle is 23◦, where maximum power is coupled

to the fundamental mode; at the same time, the second-order mode power is

minimized, going close to -20dB. Within a ±3◦, the fundamental mode power

remains 10dB above that of the second-order mode.
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Figure 5.14: Power coupled to fundamental and first-order mode for varying
incidence angles.

Experimental Verification

The amount of power coupled to the second-order mode can be estimated by

analyzing fringes on the transmission power spectrum. Consider the excitation of

a ridge waveguide of length L with a lensed fiber and the collection of the output

beam by an identical fiber such that the ridge-to-fiber coupling can be assumed

to be reciprocal for both modes. Two propagation modes will be excited in the

ridge waveguide, sharing the total guided-light power. To first order, the field at

the output of the guide can be described by 6

Eout = a1 exp
(

−i
ω

c
n1L

)

+ a2 exp
(

−i
ω

c
n2L

)

, (5.17)

6Assuming the collected power to be exclusively from the two guided modes.
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where a1 and a2 are related to the transmission coefficients of the two modes. The

optical power will be proportional to

|Eout|2 = |a1|2 + |a2|2 + 2 · ℜ{a1a2} cos
(ω

c
∆n · L

)

(5.18)

This function is periodic with respect to ω. The argument of the cosine can be

expanded as φ ≈ φ(ω0) + ∂φ(ω0)/∂ω∆ω, such that

∂φ

∂ω
=

L

c
· ∆ng, (5.19)

with ∆ng the difference between the group indices of the two modes7. The group

index difference can be obtained from the oscillation period by setting ∆φ =

φ(ω1) − φ(ω0) = 2π and using Eq. 5.19:

∆ng =
λ2

L · ∆λ
. (5.20)

Here, ∆λ is the oscillation period in terms of wavelength, obtained from the

relation ∆ω = −2πc/λ2 · ∆λ.

Defining x = a2/a1, the following expression gives the field extinction8:

(

Eout,max

Eout,min

)2

=

(

1 + x

1 − x

)2

. (5.21)

The extinction is larger for waves of compatible power levels. A plot of the ex-

tinction versus the factor x2 is shown in Fig. 5.15. Notice that fringes with ap-

proximately 1dB extinction correspond to a secondary (weaker) signal 20dB below

the main wave. The measurement setup was built such that the sample could be

rotated around its normal direction, thus allowing the beam incidence angle to

7The group index is defined as ng = n + ω∂n/∂ω.
8It is considered that 0 ≤ x ≤ 1.
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Figure 5.15: Power extinction due to the interference of two waves as a function
of the relative power between the two.

be tuned, as depicted in Fig. 5.10. In practice, previously to the measurement of

the PC structures, transmission spectra of a reference waveguide were obtained at

various incidence angles, so that a sufficient tilt could be found that would reduce

the power coupled to the high-order access waveguide mode to an acceptable level

.

Figure 5.16 shows representative transmitted power spectra obtained for 17◦

and 25◦ incidence. In the former case, large fringes are observed, with dips

spaced by ≈ 66nm. From Eq. 5.20, this corresponds to a group-index differ-

ence 0.024 < ∆ng < 0.026, compatible with the phase-index difference between

the two first waveguide modes. The oscillation amplitude is of approximately

6dB, corresponding to a ratio of ≈ -5dB between second- and first-order mode

powers. In the 25◦ angle case, the transmission spectrum varies within a 1dB
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Figure 5.16: Ridge waveguide transmitted power for incidence angles of 17◦

and 25◦.

interval, corresponding to a second-order mode power about 25dB lower than the

first-order mode power.

5.7 Summary and Conclusions

The experimental technique used to characterize Photonic Crystal (PC) struc-

tures in the present work was described in detail in this chapter.

Standard test-structures were devised for the measurement of PC properties,

consisting of mesas connected to access ridge waveguides: each mesa carried one

particular PC pattern and light was inserted and extracted from the PCs through

the access guides. The test-structures were general enough to allow various types

of PC patterns to be defined and characterized. Coupling of light into and out of

the test structures was realized through lensed fibers. The alignment procedure
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was very simple and fast, not requiring any free-space optics, and offered a high

level of repeatability.

A calculation of the bound modes of the slab waveguides formed at mesa

regions was carried out considering sensible ranges for waveguide layer thicknesses

and refractive indices. Later chapters confirm the validity of the refractive index

ranges found in the present calculations. Modal calculations for the access ridge

waveguides revealed that these present two laterally-bound modes. Given their

multi-mode nature, special care is necessary for fiber-to-waveguide alignment, as

explained in the text, so that most power may be coupled to the fundamental

mode.

The measurement system, which included an Agilent 81910 All-Parameter

Analyzer, allowed the characterization of test devices in terms of Müller and

Jones matrices, which constitute very powerful tools for the analysis of quasi-

2D PCs. Müller matrices yield, within one measurement run, information about

the polarization-dependent behavior of the devices without the necessity of know-

ing the exact polarization state at its input and output; Jones matrices allow,

additionally, the determination of the device phase response. In summary, the

two matrices yield the complete device amplitude and phase responses, including

polarization dependence, in a very accurate and simple way. Important aspects of

Müller and Jones matrix analysis as applied to TE and TM polarization-resolved

measurements, as well as Group Delay (GD) and Differential Group Delay (DGD)

measurements were included in the text.
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Finally, it is important to point out that, although the fabrication of the

test-structures is quite involved, the present measurement technique allows for

the accurate and complete measurement of polarization-dependent amplitude and

phase transfer functions of PC structures in a very simple and accurate way.
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Chapter 6

Experimental Results

In this chapter, the experimental characterization of four different PC struc-

tures is reported.

In the first section, a short (10µm) rectangular lattice of holes is investigated

that provides a low-pass transmission transfer function with relatively low inser-

tion loss and a 20dB stop-band extinction. Lattices with 7◦-9◦ tilt angles are

realized in an attempt to reduce back-reflections. This extremely compact fil-

ter structure could find application as a rejection filter for the entire L- optical

communications band.

In Section 6.2, a three-line-defect waveguide realized in a triangular lattice

(denominated W3(M)) that presents a band-gap for TM polarization is character-

ized for power transmission and reflection, as well as transmission group delays. A

small group delay enhancement is observed at the band-gap edges, together with

very high group velocity dispersion over a bandwidth of about 1nm.

Section 6.3 deals with a series of asymmetric multi-mode line-defect waveguides

offering transmission stop-bands that could be conveniently used for broadband

notch filtering. Multi-mode propagation is shown to considerably affect the trans-
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mission transfer function of shorter-length waveguides, in terms of stop-band ex-

tinction and pass-band distortion.

Finally, Section 6.4 presents the characterization of a single-mode, single-line

defect PC waveguide in the Γ-K direction of a triangular lattice. Extremely short

waveguide lengths are shown to produce a very large stop-band extinction and

relatively high group delays.

6.1 Photonic Crystal Rectangular Lattice Filter

Extremely compact Photonic Crystal (PC) microcavity filters for optical com-

munications have been proposed and demonstrated, with promising results [1] for

employment in monolithic Photonic Integrated Circuits (PIC). The wide band-

widths achieved offer good prospects for applications in coarse DWM (CDWM)

systems. One of the main difficulties however in introducing such structures in

one of the paths of a PIC that includes an internal light source [2] is in reducing

the power level of reflected waves that could be fed-back to the source thereby

causing laser mode instability and linewidth deterioration [3].

In this section, a 10-µm-long, broadband PC grating filter with reduced back-

reflection levels is demonstrated that could be used for rejection of entire optical-

communications bands. The reflection-mitigation technique consists in tilting the

grating with respect to the input waveguide by a few degrees, as illustrated in

Fig. 6.1, thereby reducing the coupling back into the fundamental mode of the

input waveguide. A similar scheme is widely used to reduce the facet reflectiv-
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ity of traveling-wave semiconductor optical amplifiers [4, 5]. Each period of the

present grating filter was formed by removal of three rows of holes from a bulk tri-

angular lattice-of-holes PC in the Γ-M crystal direction as illustrated in Fig. 6.5.

The resulting pattern is a rectangular array of holes, spaced by a in lateral di-

Figure 6.1: SEM image of fabricated PC pattern on top of 20µm× 10µm mesa.

rection and by 2
√

3 · a in the longitudinal direction, as illustrated in Figs. 6.2(a)

and 6.2(b). This structure was chosen based on the assumption that the single

rows of holes forming the grating mirrors would cause very low overall out-of-

crystal-plane radiation losses as well as very little distortion to incident beams,

resulting in more efficient wave interference and therefore better filter transfer

functions. The original bulk PC has been shown to present a large (> 80%) re-

flectivity in the band-gap region [6]. It is worth mentioning that the filter was

designed having in mind a PIC based on weak-confinement waveguides [2], such

that bound modes were expected to extend a couple of microns outside of the
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guiding region. This required a laterally wide structure such as shown in Fig. 6.1;

the same concept could nonetheless be applied to strong waveguides, as realized

in [1].

At the time of the investigation, it was desired to use a partially fabricated

wafer with test structures including 10-µm-long mesas. This limited the maximum

number of periods to 6 so that gratings could fit within the mesa length.

(a) (b)

Figure 6.2: (a) Bulk triangular lattice of holes PC. Holes within the dotted
regions are suppressed to form the grating shown in(b).

6.1.1 Experimental Filter Characteristics

Sets of devices with four different tilt angles were fabricated with lattice con-

stant a = 300nm. Each set encompassed four similar patterns with slightly varying

filling fractions (estimated to be between r/a = 0.22 and r/a = 0.26 from SEM

images). Figures 6.3(a) and 6.3(b) show transmitted and reflected power for de-

vices with 0-degree tilt angle and various radii. The extinction is close to 20dB

and the passband-edge is close to λ = 1.54µm. Notice the displacement of the

passband edge toward shorter wavelengths with increasing hole radius, accompa-

nied by displacement of the reflectivity dips. The latter correspond to resonances

in the transmission pass-bands and result from a fairly efficient wave interference.
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The transmission spectrum for a ridge waveguide is also plotted; comparison be-

tween this and the grating curves indicate an insertion loss of roughly 3dB at

λ = 1.50µm. Given the repeatability of the pass-band power levels, this value is

believed to be a good estimate of the insertion loss. Reflectivity maxima range
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Figure 6.3: (a) Power rransmission for gratings with a = 300nm and varying
r/a ratios. (b) Corresponding power reflection. Curves for a reference straight
waveguide are also shown.

between -22 and -17dB, appearing at times to reach above the transmitted power

level. This is due to a small difference in the fiber-to-waveguide coupling effi-

ciencies between the two access waveguides. The reference waveguide reflectivity

power level is reasonably high. This is most likely due to the finite modal reflec-
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tivity at the semiconductor-air interfaces, as evidenced by the large ≈ 0.02-nm-

period 1 Fabry-Pérot resonances.

Transmission and reflection curves of tilted gratings are shown in Figs. 6.4(a)

and 6.4(b). One un-tilted grating curve is also shown for comparison, as well as

one from a reference ridge waveguide. A moving-average filter was used to smooth

the tilted-grating reflectivity curves, which had large 0.04-nm-period Fabry-Pérot

resonances. In terms of power transmission, the stop-band is in total between 15dB

and 20dB lower than the pass-band. The insertion loss at the pass-band seems

to suffer little from the tilting, remaining below 5dB. Notice that the transmitted

power within the stop-band tends to move up with increasing wavelengths. This is

due to the existence of an additional pass-band at wavelengths above λ = 1.55µm,

given that the transfer function is periodic in ω. It is apparent that the 9◦ curve

presents the worst extinction, insertion loss and sharpness.

The reflectivity curves for tilted gratings do not present the same prominent

features of the un-tilted case (i.e. reflectivity dips and side-lobes). The large

(approximately 20dB) variation in transmitted power finds no corresponding vari-

ation in the reflected power characteristic, indicating an efficient suppression of

the modal reflectivity. Reflected power levels remain between 13dB and 20dB be-

low the un-tilted grating reflectivity and between 5 and 10dB above the reference

waveguide level. It is apparent that the 7◦-angle grating presents an overall higher

reflectivity, while the 9◦ case seems to display the lowers power levels over a wider

bandwidth.

1Corresponding to a length of ≈ 1.5mm.

153



1.5 1.52 1.54 1.56 1.58 1.6 1.62
−50

−45

−40

−35

−30

−25

−20

−15

λ (µm)

T
ra

ns
m

is
si

on
 (

dB
)

9°
8° 7°

Reference

Un-tilted

(a)

1.5 1.52 1.54 1.56 1.58 1.6 1.62
−45

−40

−35

−30

−25

−20

−15

λ (µm)

R
ef

le
ct

io
n 

(d
B

)

8°9°

7°

Reference

Un-tilted

(b)

Figure 6.4: (a) Power transmission for gratings with a = 300nm and varying
r/a ratios. (b) Corresponding power reflection. Curves for a reference straight
waveguide are also shown.

Mesas are not expected to considerably affect the measured PC power trans-

mission characteristics. Mesa lengths are sufficiently short for multimode interfer-

ence effects to be negligible: the beat length between the two lowest order mesa

modes is estimated to be larger than 1mm, since mesa widths are of 20µm [7].

Regarding mesa reflectivity, the effective index step between ridge waveguide and

mesa can be estimated to be below 0.1, from which a maximum reflection coef-

ficient of 0.01 can be estimated, or a reflectivity of 10−4. The reflectivity of the

reference ridge guide in Fig. 6.4(b) is of roughly 0.01 (≈-20dB, compared to the
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grating reflectivity), considerably higher than that of the waveguide-mesa inter-

face. As such, mesas are expected to contribute very little the measured filter

reflectivity. This of course does not mean that future filter designs should not

include changes to the waveguide-mesa interface for reduced reflectivity.

Figures 6.5(a) and 6.5(b) show respectively measured power transmission and

reflection spectra for a mesa not containing any PC pattern and a reference,

straight ridge waveguide. As expected, very little difference is observed between

the two sets of curves.
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Figure 6.5: Power transmission (a) and reflection(b) for a reference, straight
ridge waveguide and a black 10-µm-long mesa.

6.1.2 Device Simulation

Finite-Differences Time-Domain (FDTD) simulations were realized in an at-

tempt to explain the observed features. Simulated structures included the 10-µm

mesas and small portions of both input and output waveguides such that reflec-

tions from the mesa-waveguide discontinuities could also be taken into account.
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Refractive indices for the ridges and mesa and surrounding regions were those of

first TM-mode effective indices calculated for the vertical epi-structure at the cor-

responding regions. Absorption losses and those caused by out-of-plane radiation

were considered to be null.

Figure 6.6 shows transmitted and reflected power spectra for gratings with

lattice constant a = 300nm, hole radius r = 0.24a and four different tilt angles.

Once again, the un-tilted grating transmission spectrum presents clear resonant

peaks. The minimum transmitted power within the stop-band (λ > 1.56µm) is

approximately -20dB. The reflectivity is very large within this range, approaching

-1dB. This is however drastically reduced for tilted gratings, for which it remains

below -30dB in the 8◦ and 9◦ angle cases. The transmission stop-band extinction

remains all the same close to -20dB. The passband-edge roll-off is roughly the

same as for the case with no tilt, with power decreasing by roughly 15dB in

20nm. Due to a less efficient wave interference, the original pass-band resonances

are subdued and transmission decreases monotonically to the -3dB point close to

λ = 1.54µm; the insertion loss at the maximum transmission point at λ = 1.50µm

is 1.5dB. Notice also the slow increase in transmitted power for larger pass-band

wavelengths, a feature clearly observed in the experimental results.

It is important to point out that a light beam experiences diffraction within

each grating period and is slighted distorted upon incidence at the holes. Part of

the resulting output beam power will not couple to the output guide fundamental

mode, adding to the insertion loss. At the same time, part of the incident power

is carried by waves that travel laterally in the grating cavities, due to the lack of
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Figure 6.6: Finite-Differences Time-Domain simulation of gratings with a =
300nm, r/a = 0.24 and different tilt angles.

a lateral confinement mechanism. This can be clearly observed in Fig. 6.7, which

shows the field distribution, obtained with FDTD, resulting from incidence upon

an 8◦ grating with r/a = 0.24 at λ = 1.5µm (within the passband). The time

step in which this distribution was collected is such that both averaged reflected

and transmitted powers had reached steady-state.

Enhanced filter characteristics can be achieved by tuning the hole dimensions,

as shown in Fig. 6.8. Increased radii lead to enhanced stop-band extinction, in

detriment of passband roll-off. The band-edge shifts towards lower wavelengths

with increasing radii, an effect clearly observed in the experimental curves. The

enhanced extinction can be explained by an improved effective reflectivity ob-

tained from larger holes: Figure 6.9 shows the simulated reflected and transmitted

powers for one row of holes of varying radii.
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Figure 6.7: FDTD Hy-field component distribution for incidence upon an 8◦

grating with r/a = 0.24 at λ = 1.5µm.

The PC propagation characteristics cause the center of the output beam to

be shifted by a small distance from the center of the mesa. Displacement of the

output waveguide can thus lead to optimal stop-band extinction and edge slope,

as indicated by the dashed curve in Fig. 6.8.

It must be pointed out that the compactness of the design and relatively low

insertion loss may allow the cascading of various such filters for proper tailoring

of the transmission transfer function.

The reflected power into the fundamental mode remains below -30dB through-

out the displayed bandwidth in all cases, a much lower level than observed in the

experimental results. One probable reason for this discrepancy is the existence

of two high-order modes of the access waveguides, which can carry part of the

total reflected power. FDTD simulations in fact show that approximately -15dB

and -5dB of the incident power couple respectively into back-reflected first- and
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Figure 6.8: Finite-Differences Time-Domain simulation of 8◦ -tilted gratings with
a = 300nm and varying r/a. The dashed curved is for a device with r/a = 0.24
the output waveguide of which has been displaced to the right by 0.55µm.

second-order mode waves at λ = 1.58µm for an 8◦ tilt. These modes of course

are expected to present considerably higher losses than the fundamental mode.

Another possibility would be that the access waveguides are narrower than 3µm

-due to imperfect contact lithography- and thus non-optimal for the considered

tilt-angles [4] 2. An FDTD simulation of the 8◦-tilt case with a 2.5-µm-wide

access waveguide showed approximately -25 and -12dB fundamental and first-

order mode reflectivities at λ = 1.58µm. Most likely, a combination of these two

possibilities is responsible for the observed power levels. Notice finally that the

reference ridge waveguide reflectivity in Fig. 6.4(b) is relatively high and presents

60-nm-period fringes related to multi-mode propagation: this period corresponds

to a group-index difference of 0.025, very close to the difference between effective

indices of the fundamental and first-order access waveguide modes. This shows

that collection of high-order-mode waves by the lensed fibers could significantly

2See Chapter 5
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Figure 6.9: Power transmission and reflection from a single row of holes on a
background of refractive index nTE = 3.26, obtained with FDTD.

influence the signal measurement. Waveguide tapers or mode filters such as de-

scribed in [8] could in principle be used to eliminate high-order modes thereby

yielding improved reflected power levels.

Summary and Conclusions

The demonstrated gratings present an extremely compact footprint of 10mm

and a wide bandwidth that could be used for rejection of the entire L-band optical

communications band. The maximum extinction achieved was 20dB, which can be

improved by etching larger holes. Given the relatively low insertion loss, the filter

also offers the possibility of being cascaded, adding another degree of freedom

for transfer-function design. Reflectivity levels can be theoretically reduced to

very low levels depending upon the design. The experimental reflectivity curves

did show a much larger reflected power level, part of which might be carried

by a high-order access waveguide mode. This being the case, the experimental

reflected power level could be reduced by employment of a mode filter at the
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grating input. In summary, the reported structures present good prospects for

the implementation of passive optical filters that can be directly incorporated

into a monolithic PIC.

It is worthwhile to point out that similar results to the presented above may

be obtained from gratings formed by deeply etched trenches rather than holes.

The only reason for the choice of PC patterns rather than trenches in the present

case was the unavailability of a stable deep trench etching process.

6.2 Three-line-defect Waveguide:

Γ-M Orientation

Three-line-defect waveguides are in general multimode at frequencies within

the bulk-crystal band-gap as a consequence of the wider channel widths; prefer-

ential excitation of particular modes can however be achieved by having proper

field distributions at the waveguide input. For instance, incidence of a laterally-

symmetric, N th order mode of a butt-coupled ridge waveguide will cause the

preferential excitation of symmetric PC modes of the same order [9]. The avail-

ability of multiple guided modes translates into a larger flexibility in the design

of dispersive elements, since coupling of modes of different orders yields a se-

ries of band-gaps at various positions in the crystal band-structure, each having

particular propagation characteristics. At the same time, out-of-plane radiation
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losses have been predicted [10] to be much lower than those found in single-line

counterparts, due to a lesser interaction between the field and PC holes.

The W3(M) waveguide shown in Fig.6.10, formed by omitting three lines of air

holes along the Γ−M direction of the 2D triangular lattice PC, presents a small

band-gap close to the Brillouin-zone boundary; propagation close to the band-gap

edges is expected to slow and dispersive. To verify this, a series of 80-µm-long

waveguides with lattice constants a = 400nm and a = 420nm and varying air-

filling fractions were fabricated and characterized. The channel widths were on

the order of 400nm.

Figure 6.10: Three-line-defect waveguide in the Γ-M direction ( W3(M) )

Power Flux and Losses

The way in which power is coupled from the input access guides to the output

is schematically depicted in Fig. 6.11. In this figure, the entire test-structure was

divided in three regions: Region (I) corresponds to the input ridge waveguide;

Region (II) to the PC waveguide; Region (III) to the output guide. Incident

power upon the PC guide is carried by a fundamental access guide mode. At

the interface between access and PC guides, part of the incident power is coupled
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to defect- and unbound crystal modes that propagate forward in Region (II);

part of it is lost radiatively into the substrate; and finally part of it is reflected

into bound an unbound access waveguide modes travelling backwards in Region

(I). Reflected power coupled to unbound access guide modes will be lost during

propagation towards the collection fiber. Recall that the access guides are multi-

mode, so the power collected by the lensed fibers is most likely carried by both

fundamental and first-order access guide modes.

Concerning propagation in Region (II): as mentioned previously, part of the

incoming power is coupled into the defect-modes of the PC guide, which present

high confinement in the defect region. The propagation losses experienced by

such modes is represented by the symbol αb in Region (II) of Fig. 6.11. This

includes material absorption and substrate radiation. At the same time, part of

the incident power is coupled to poorly confined modes; power coupled to such

modes propagates away from the defect, such that only a small portion of it is

coupled into bound modes of the output access ridge waveguide in Region (III).

The propagation losses of unbound modes are represented by the symbol αu in

Region (II). Unbound PC modes are spread over the crystal regions, interacting

strongly with the PC holes; large propagation losses due to radiation are thus

expected, such that αu ≫ αb.

At frequencies near the defect-mode band-gap, power carried by forward-

propagating defect modes is coupled into backward-propagating defect modes due

to the Bragg effect. These reflected waves coupled into both bound and unbound,

backward-propagating access waveguide modes in Region (I).
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Figure 6.11: Schematic of power flux through test-structures. The symbols αu

and αb correspond respectively to propagation losses of unbound and defect crystal
modes.

From the discussion above, it is very reasonable to assume that power collected

from the output ridge waveguide is carried exclusively by defect PC modes in the

PC waveguide. The overall insertion loss of the test devices would then include:

coupling losses at the fiber-ridge waveguide interface; propagation losses of the

access ridge waveguide modes; coupling losses into the defect mode; propagation

losses of the defect mode in the PC waveguide; coupling losses from the PC

mode into bound access waveguide modes; propagation losses in the output access

guides; coupling losses between ridge and collection fiber. Notice that substrate

radiation losses at the interfaces, as well as power coupling to unbound access
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guide modes can be all lumped together as coupling losses. Return losses of the PC

waveguide include reflections from the interface between fiber and semiconductor,

ridge and PC waveguides and the distributed Bragg reflectivity.

As will be shown later, the propagation losses of defect PC modes can be

estimated by fitting with 1D Coupled-Mode Theory (CMT) expressions.

6.2.1 TE- and TM-polarization Power Transmission

The power transmission for TE and TM waveguide modes was obtained using

the techniques described in Chapter 5. The correct correspondence between mea-

sured curves and polarization states was primarily verified by infrared imaging of

the output waveguide signals through a free-space polarizer. Additionally, exper-

imental results were correlated with effective 2D PC band structures, calculated

with the 2D Plane-Wave Expansion (PWE) method [11]. The effectiveness of

this technique has been experimentally demonstrated in various articles, includ-

ing [12, 13, 14]; additionally, it has been detailed in [15] that band-structures of

3D lattice-of holes PC with weak vertical confinement and deep holes can be very

well approximated by band structures of effective 2D PC.

Figure 6.12(a) shows band diagrams for TM modes of a waveguide with r/a =

0.265 (r being the hole radius) and background index nTM = 3.26 (equal to

the effective index of the epi-wafer’s first TM slab mode at λ = l.55µm). The

color scale corresponds to the electric field energy within the line-defect region,

normalized to the total power in the unit cell. Well-confined modes (darker dots)
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with even symmetry yield higher transmitted output power; two bands of such

modes are clearly distinguishable, presenting a small band gap at the Brillouin-

zone boundary, around a/λ ≈ 0.275. This band-gap clearly corresponds to the

stop-band found in the transmission curves shown in Fig. 6.12(b). Modes on the

high-frequency band are well confined, while those on the low-frequency side are

more spread out in the crystal region. It is expected that the latter will suffer

higher losses, as a result of a larger interaction with holes. Notice that confined

modes are of the index-guided type [13], since a bulk-crystal band gap does not

exist for TM modes in the present case.

(a) (b)

Figure 6.12: (a) Band structure for TM modes of a W3(M) waveguide with
r/a = 0.265 and n = 3.26. The yellow shaded area indicates the mini-band-gap
position. (b) Corresponding TM transmission curves for devices with a = 400nm,
a = 420nm, and a = 440nm.

Figure 6.13(a) shows the TE-mode band structure for the same waveguide with

background refractive index nTE = 3.28 and Fig. 6.13(b) shows the corresponding

transmission curve. A high-confinement band below a/λ ≈ 0.255 in Fig. 6.13(a)

corresponds to the transmission band on Fig. 6.13(b). The inexistence of highly-
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confined modes in the region above a/λ ≈ 0.255 explains the low transmitted

power in this range in Fig. 6.13(b). A very small band of highly-confined modes

exists near a/λ ≈ 0.275. Transmitted power carried by these is expected to be

very low, given their closeness to the Brillouin zone boundary and the narrow

width of the band. It must be pointed out that the substrate light-line in all cases

meets the Brillouin-zone boundary at a/λ ≈ 0.09 thus all displayed modes are

expected to leak into the substrate.

(a) (b)

Figure 6.13: (a) Band structure for TE modes of a W3(M) waveguide with
r/a = 0.265 and n = 3.26. The yellow shaded area indicates the mini-band-gap
position. (b) Corresponding TE transmission curves for devices with a = 400nm,
a = 420nm, and a = 440nm.

6.2.2 TM Band-edge Propagation

The TM polarization filter characteristics near the band-gap are now studied

in more detail. Measured power transmission and reflection from representative

devices with a = 420nm and a = 440nm are shown with black lines in Fig. 6.14.

These curves are normalized to their respective maxima within the measurement

wavelength range. Transmission group delay curves are also shown in the figure.
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An approximately 10-nm stop-band is observed centered at ≈ 1533nm for

the first device and at ≈ 1607nm for the latter, both corresponding to a/λ ≈

0.274. The less pronounced resonances on the right side of the stop-bands can

be explained by the predicted higher losses. The wide stop-band in transmission

corresponds to a high-reflection band. Also, maxima in the transmission curves

coincide with minima in reflection. These resonances are due to the finite extent

of the PC waveguide [16].

It must be pointed out that the TM transmission PDL is more than 20dB at

all wavelengths except within the stop-bands for all measured devices; PSP at

λ = 1520nm and 1580nm were used to generate transmission curves respectively

for a = 420nm and a = 440nm. For reflection, PSP at λ = 1532nm and λ =

1610nm were chosen, with PDL≈10dB. The raw reflected signal curve presented

a series of 0.4-nm-period oscillations caused by a beating of reflected light from the

wafer facet and the PC waveguide input. To suppress this effect, the raw signal

was filtered with a 51-sample (500pm) Locally Weighted Scatter Plot Smooth

(LOWESS) filter.

Group Delay

Group delay curves for the transmitted signal were obtained from the same in-

strument [17] for a fixed polarization state at the input. Before the measurement

was taken, the power in the pass-bands (determined from the previous transmis-

sion measurements) was maximized by tuning a polarization controller inserted

before the input fiber. This procedure assured that mostly TM modes were be-
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Figure 6.14: Transmission, reflection (T and R in a.u.) and excess group delay
(τg) for waveguides with two different lattice constants. Black curves are experi-
mental, blue are fitted. (a) a = 400nm. (b) a = 420nm.

ing excited in the input waveguide. At each wavelength, a 100-sample averaging

was used for accuracy. The same measurement was performed for a regular ridge

waveguide on the same wafer. The displayed group delay curves are obtained

by subtracting the ridge waveguide results from those of the PC waveguides; the

displayed values are thus of excess group delay. Cavities between the air-facet

and ridge-PC waveguide interfaces caused a series of resonant peaks in the mea-

sured curves. Smoothing with a 101-sample (1nm) LOWESS filter revealed the

PC waveguide group delay structure alone. Figures 6.14(a) and 6.14(b) show mea-

sured group delay for the same devices as in the previous section. The oscillatory

profile with maxima at the first reflectivity minimum is due to the finite extent of

the waveguides, as detailed in [16]. Similar group delay curves were experimen-

tally observed in a multilayer GaAs PC [18] and more recently in a silica colloidal
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PC [19]. The peak excess group delay is τg ≈ 0.62ps for a = 420nm and 0.65ps

for a = 440nm. The group delay enhancement over that experienced through a

ridge waveguide of the same length is of about 60%.

Fitting with Coupled-Mode Theory

Coupled-Mode Theory curves were fitted to the experimental data to yield

estimates of coupling strength and propagation losses in the waveguides [12]. In

the present case, coupling happens between modes of the same order. Bloch

modes on the two sides of the stop-band are considerably different, though, and

thus require different fitting parameters. The simplified coupled-mode theory

transmission and reflection coefficient expressions in this case are:

t =
2σ

(z + σ)e+σL − (z − σ)e−σL
(6.1)

r =
2i|κ| sinh(σL)

(z + σ)e+σL − (z − σ)e−σL
(6.2)

In these equations,κ is the coupling coefficient, z = α + i · (β − β0), σ2 = κ2 + z2,

α and β the loss and propagation constants for both forward- and backward-

propagating modes and L is the total length. The parameter β = 2πn/λ is related

to the phase index n, which describes the spatial phase evolution of the field in

an unperturbed medium. Notice that material absorption and out-of plane radi-

ation, either intrinsic or caused by hole imperfections can be phenomenologically

modeled by the loss parameter.

A least squares fitting algorithm was used to fit the experimental transmission

curves of all devices using n, κ and α as parameters. The phase index n was
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allowed to change within 10% of the values calculated from the PWE calculation

[11]. Fitted curves for the devices shown in Fig. 6.14 are displayed in blue.

Fitting values obtained from four devices with a = 420nm and slightly different

filling fractions were in the ranges n = 3.5 ± 0.1, α = (41.8 ± 4.15)cm−1, κ =

(4.3 ± 0.3)102cm−1 on the high-frequency band-edge; on the low-frequency edge,

n = 3.7±0.2, α = (77.2±2.4)cm−1, κ = (3.7±0.1)×102cm−1 were obtained. Five

devices with a = 440nm and slightly different filling fractions yielded parameters

in the ranges n = 3.5 ± 0.1, α = (29.8 ± 4.9)cm−1, κ = (3.9 ± 0.3) × 102cm−1 on

the high-frequency side and n = 3.7 ± 0.1, α = (90 ± 1.2)cm−1, κ = (4.1 ± 0.4) ×

102cm−1 on the low-frequency side. The spread in phase index and coupling

coefficients can be attributed to the differing filling fractions and hole quality,

as well as noise in the experimental data. Additionally, the CMT model used

assumes uniform reflectivity and coupling coefficient distribution along the crystal,

while the devices’ filling-fractions vary slightly along the PC waveguide. The PC

lithography was realized without any proximity-effect correction and thus a slight

deviation from the theory is expected.

The large coupling coefficients dictate the wide resonance widths, as well as

the stop-band width. It is apparent that losses are considerably higher on the low-

frequency band for both groups of devices, as expected from the band diagrams.

An inspection of Fig. 4.15 from Chapter 4, which shows a cross-sectional SEM of a

representative PC guide, reveals that etched holes barely extend past 1µm below

the quaternary layer and become conical in the bottom; some sidewall roughness

171



is also visible. These features cause large out-of-plane radiation that is directly

related to the high loss figures [20].

Reflection and group delay curves were obtained with the same parameters.

In all cases, a good agreement with experimental curves is observed. Despite the

mild group delay enhancement, calculated GVD from CMT reaches D ≈ −8.5 ×

106ps/km·nm on the high-frequency band-edge for the device in Fig. 6.14(b), al-

most five orders of magnitude greater than that of dispersion-compensating fiber

[21]; this corresponds to a total dispersion of -0.7ps/nm for the 80−µm waveguide.

The bandwidth over which the dispersion remains within the same order of mag-

nitude is slightly larger than 1.0nm, pointing towards possible uses of similar

PC waveguides in dispersion compensation or pulse-shaping by proper tuning of

the coupling coefficient and lattice constant. Considering the same parameters

and zero loss, the maximum achievable excess delay and largest total dispersion

are respectively 1.06ps, and -1.2ps/nm. On the other hand, it must be noted

that the large dispersion figures reported here can in principle be found in any

one-dimensional system with very large coupling coefficients. Photonic crystal

waveguides naturally offer such characteristics, given the large index discontinu-

ities and very narrow confinement regions.

6.2.3 Summary and Conclusions

Polarization-resolved measurements of transmission, reflection and group de-

lay characteristics of a series of W3(M) PC waveguides was realized. Transmission
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and reflection measurements revealed a small stop-band for TM-polarized modes.

Measured excess group delay curves displayed a maximum enhancement of ap-

proximately 0.6ps ( 60% over that from a ridge waveguide of the same length)

at the edge of the stop-band. Group-Velocity Dispersion of almost five orders of

magnitude that of dispersion-compensating fiber was observed in the same region.

Experimental curves were fitted with coupled-mode theory, yielding estimates for

losses and coupling coefficient. Enhancement of group delay and GVD is clearly

dependent on propagation losses. Even at zero loss, though, only a mild en-

hancement of group delay is found. On the other hand, dispersion is found to be

extremely large over reasonably wide bandwidths, even when considerable losses

are present. This suggests that, by proper tuning of coupling coefficients, very

compact dispersion-compensating or pulse-shaping elements could be designed.

6.3 Multi-mode Line-defect Waveguides

As discussed in Chapter 3, multi-mode line-defect waveguides present small

band-gaps for zero-order modes, a convenient characteristic for the realization

of monolithically integrated CDWM notch filters. Stop-bands can be positioned

by modification of the PC lattice constant or filling factors and of the defect

region width. Achievable bandwidths can be rather wide, given the large index

discontinuities and narrow channel widths. The transmission transfer-functions

are on the other hand strongly dependent upon the propagation characteristics of

the many coupled-to modes of the multi-mode PC guide.
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Following the discussion from Chapter 3, stop-bands arise from the coupling

between effective zero-order and counter-propagating high-order modes, so that, in

a simple filter implementation in which a PC waveguide is butt-coupled to regular

ridge access guides, waves reflected by the PC distributed-feedback mechanism

will tend to couple mostly to higher-order-mode waves of the input access guide.

These waves in turn can be mitigated in a number of ways, i.e., tapering of the

input guide or even the use of MMI mode-filters [8].

The following investigation shows experimental evidence of multi-mode propa-

gation in asymmetric PC waveguides of various channel widths and its detrimental

effects for the realization of notch filters. The experimental test-structures were

similar to those described in the previous sections and the same measurement

technique was applied.

6.3.1 Anti-symmetric Waveguides

A series of 30- and 80-µm-long anti-symmetric waveguides was fabricated as

schematized in Fig. 6.15, with d = −0.2·ax, 0.15·ax and 0.8·ax, where ax =
√

3·a/2;

these are henceforth respectively referred to as of Types 1, 2 and 3. Crystals

were realized with two lattice constants, a = 350nm and a = 360nm, and slightly

varying filling fractions. For the a = 350nm crystals, channel widths were 0.84µm,

1.06µm and 1.48µm for Types 1, 2 and 3 respectively; for a = 360nm, widths

were 0.92µm, 1.12µm and 1.52µm. The choice of lattice constants was based

on preliminary calculated band-structures, such that mini-band-gaps could be
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observed within the test-equipment wavelength range, λ = 1.5 − 1.62µm. SEM

images of representative fabricated waveguides are shown in Fig. 6.16.

Figure 6.15: Schematic of fabricated asymmetric waveguides.

Figure 6.16: SEM image of fabricated PC waveguide on top of a mesa.

6.3.2 Power Transmission Characterization

The TE band-structures for the three waveguide Types and corresponding

representative 30-µm-long waveguide power transmission spectra are shown in

Figs. 6.17(a)- 6.17(c). The transmission stop-bands can be clearly related to the

band anti-crossings - highlighted by grey areas with the label a. - between the
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fundamental mode band and high-order odd-symmetry bands. Inspection of the

band structures and Bloch-mode field distributions reveal that, in the Type 1 and

Type 2 cases, the zero-order band anti-crosses with a 3rd-order band, while in

the Type 3 case anti-crossing occurs with a 5rd-order band. It is apparent that

anti-crossing high-order mode bands give rise to narrower band-gaps: stop-bands

for Types 1, 2 and 3 are respectively 30, 17 and 9nm wide, measured at the -10dB

level with respect to the pass-band. Notice that waveguide channels are made

wider whilst hole radii are kept constant; it is then intuitive that the perturba-

tion experienced by a wave at a fixed wavelength be less strong when guide walls

are brought farther apart. Given the effective lesser-magnitude coupling coeffi-

cients, narrower band-gaps arise in accordance with the following CMT band-gap

equation (repeated from Chapter 3):

∆± =
a

2π
· 4κ

n+ + n−
, (6.3)

The confinement of the backward-propagating high-order modes in each case tends

to decrease with channel width. As mentioned in previously, a lower confinement

means larger interaction with crystal holes, which translates into larger propaga-

tion losses. Another important aspect it that as crystal-guided bands approach

the lower bulk crystal band-gap edge (a/λ ≈ 0.212), confinement in the defect

region tends to decrease. This is related to a less effective distributed reflectivity

at the waveguide sidewalls.

Coupling coefficients can be estimated from the band-gap width ∆± in the

band diagram, by use of Eq. 6.3. For the Type 1 waveguide, the band structure
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Figure 6.17: Band-structures for nTE = 3.27 and r/a = 0.24 and corresponding
power transmission for representative waveguides of Types (a) 1, (b) 2 and (c)
3. Displayed lattice constants and radii produced calculated band-gaps at corre-
sponding stop-band frequencies. The grey regions labeled a. and b. correspond to
band gaps.
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yielded n+ = 3.42, n− = 11.3 and ∆u = 0.0017, for which κ ≈ 250cm−1 (κ · a =

0.09). In the Type 3 case, n+ = 3.42, n− = 11.3 and ∆u = 0.0017, for which

κ ≈ 110cm−1 (κ · a ≈ 0.04).

The stop-band position can be changed according to the radius dimensions.

Very small variations can in fact cause the stop-bands to shift considerably in

wavelength: in the Type 1 case, a ≈4nm radius increase causes a stop-band shift

of ≈14nm towards shorter wavelengths; in the Type 2 case, a ≈14nm radius

increase causes the stop-band to shift by ≈20nm; in the Type 3 case, a ≈4nm

radius increase shifts the stop-band by ≈4nm.

It must be pointed out that the position of the band-gaps in the calculated

band diagrams is very sensitive to the choice of the background index nTE. The

value used in the band structure calculations, nTE = 3.27, was within the expected

effective TE refractive index interval 3 and yielded band-gaps at frequencies cor-

responding to the experimental stop-bands for r/a values within the expected

ranges: 0.20 < r/a < 0.27, from inspection of SEM images of the etched crys-

tals. Therefore, nTE = 3.27 is assumed to be correct and r/a is used for fine

adjustments in subsequent calculations.

Secondary high-order symmetric mode bands exist in all cases, pointed out in

the band-structure diagrams, covering frequencies just below the high frequency

zero-order-mode band-gap edges. Assuming partial coupling of the incident power

to these modes, interference with (co-propagating) zero-order-mode waves is ex-

pected at the waveguide output. The deep transmission notches within the stop-

3Slab-waveguide mode calculations from Chapter 5 produced 3.25 < nTE < 3.31.

178



bands of Types 2 and 3 in fact can be attributed to very efficient destructive

interference 4. The absence of deep notches in the transmission of the Type 1

guide can be attributed to larger losses experienced by modes of the secondary

band, which presents very low confinement factors as compared to corresponding

bands of the other waveguide types. Notice also that the local power maxima

within the stop-bands are about 10dB below the pass-band levels in Types 2 and

3, while Type 1 offers an extinction of roughly 20dB. This is due to the much

larger coupling coefficient of the Type 1 waveguide, as well as the propagation

losses of both zero- and high-order modes.

Figures 6.18(b) and 6.18(a) show transmission transfer-functions for devices

with a = 360nm and L = 80µm of Types 1 and 3 respectively. The stop-band

power for Type 1 in this case is lower by roughly 10dB with respect to the

L = 30µm counterpart. This effect is expected from both the larger number

of crystal rows and the higher secondary-mode losses. For the Type 2 waveguide,

the power at the center of the stop-band is about 20dB below the pass-band and

only modest notches are observed. This further corroborates the inference that

the deep notches observed in the L = 30µm case are caused by interference with

high-order modes, considering once again that these suffer considerably larger

losses than zero-order modes.

The origin of the fringes on the low-frequency side of the stop-bands of the

30-µm-long Types 2 and 3 waveguides is not clear. In principle, similar-period

4Destructive interference in this case should be understood in the following way: the result-
ing field distribution at the interface between the PC guide and the access ridge is such that
effectively very little power is coupled into the latter’s fundamental mode.
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Figure 6.18: Transmitted and power spectra for 80-µm-long (a) Type 1 and
(b) Type 3 waveguides with a = 360nm. Displayed lattice constants and radii
produced calculated band-gaps at corresponding stop-band frequencies.

resonances are predicted by coupled-mode theory (CMT) when one uses parame-

ters extracted from the band-structures, as realized in Section 6.2; this however

does not explain the absence of resonances on the high-frequency stop-band side,

especially since the confinement factors (and therefore propagation losses) on the

two stop-band sides are not considerably different. Moreover, when fitting with

CMT, the propagation loss parameters required to generate fringes of comparable

amplitude variation are too low to produce good fits with experimental curves of

corresponding 80-µm-long waveguides, in terms of the stop-band edge slopes 5.

On the other hand, fitting to 80-µm-long waveguide data yields parameters that

allow reasonable fits with 30-µm-long waveguide curves as far as the stop-band

width is concerned, however with very subdued fringes. Most likely, interference

with the secondary symmetric modes plays an important role in the definition of

the transfer function, possibly causing the large fringe amplitudes. Notice as well

5These are strongly influenced by the backward-propagating wave losses.
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that the absence of fringes on the high-frequency side of the stop-bands can be

linked to the fact that secondary mode bands in these regions are very weakly

confined and present band-gaps (indicated by the grey areas labeled b. in the

band-structures).

Compared to the transmitted power of a reference straight ridge waveguide, the

pass-band power transmission levels varied between -10dB and -5dB among the

various tested devices. The uncertainty is due to the different fiber-to-waveguide

coupling efficiencies at each alignment, since the devices were in different wafers.

Nonetheless, one can estimate insertion losses below 10dB. This relatively high

value is partly due to the large mismatch between the PC and butt-coupled ridge

waveguide widths. The filter performance could in principle be improved by ta-

pering input and output guides to compatible widths.

6.3.3 Reflectivity

Reflectivity curves for waveguides of Types 1 and 3 are shown in Figures 6.19(a)

and 6.19(b). Corresponding transmitted power curves are displayed as well so that

stop-bands can be easily located and reference waveguide curves are included for

comparison. All reflectivity curves have been smoothed with a running average

filter to eliminate Fabry-Pérot resonances.

Small reflectivity peaks can be seen within the band-gap wavelengths, at λ =

1.53µm in the Type 1 case and at λ = 1.59µm in the Type 3 case. The reflected

power increase in this region however is not compatible with the large ≈20-dB drop
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Figure 6.19: Transmitted and reflected power spectra for 80 − µm asymmetric
waveguides of (a) Type 1 and (b) Type 3. (c) Transmitted and reflected power
spectra of an 80 − µm W3(M) waveguide.

in transmitted power. Power reflectivity levels are in fact very similar to what

is obtained from reference waveguides. In addition, the peak reflectivity levels

are quite low when compared to that of the W3(M) waveguide from Section 6.2,

shown in Fig. 6.10. In the latter case, backward-propagating modes are zero-order;

the reflectivity peak reaches between 10-15dB above the power level outside the

band-gap, corresponding to the large stop-band transmitted power drop. A clear

distributed-feedback reflectivity signature is in fact easily identified.
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It very likely that most of the collected reflected power in the asymmetric

waveguide case is carried by high-order access waveguide modes. Nevertheless, a

10-dB reduction in reflected power can be inferred from the experimental results,

with respect to the W3(M) reflectivity. This corroborates the validity of the hy-

pothesis that coupling to asymmetric high-order modes may lead to considerably

lower reflected power levels.

6.3.4 Stop-Band as Function of Length

Results above related to stop-band extinction are summarized in Figs. 6.20(a)

and 6.20(b), which show the maximum insertion and return loss 6 as a function

of waveguide length for waveguides of Type 1 and Type 3.

The higher maximum insertion loss observed in Type 1 guides is due to the

higher losses experienced by forward-propagating zero- and (secondary) high-order

modes, as well as the larger coupling between forward- and backward-propagating

PC modes, which results in an increased distributed reflectivity. For the two

Types, insertion losses increase considerably with waveguide length, a result of

higher total losses experienced by forward-propagating modes and also the in-

creased distributed reflectivity due to the larger number of crystal periods. This

increased reflectivity can be linked to a small decrease in minimum return loss

for longer waveguide lengths, observed in Fig. 6.20(b). The return loss at the

same time remains roughly at the same level for both Type 1 and Type 3 guides,

6From the figures in the last two sections, insertion and return loss are maximal and minimal
within the stop-bands.
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reflecting the fact that the distributed reflected power collected by the access fiber

is small.
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Figure 6.20: (a) Maximum insertion loss and (b) Minimum return loss as func-
tions of waveguide length for waveguides of Types 1 and 3.

6.3.5 Summary and Conclusions

Asymmetric multi-mode PC waveguides with three different channel widths

were fabricated and analyzed experimentally, each providing broad transmis-

sion stop-bands that can be convenient for the realization of extremely com-

pact monolithically integrated optical notch filters. Stop-bands originate from the

coupling between a forward-propagating zero-order-mode wave and a backward-
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propagating high-order mode counterpart. The waveguide channel width deter-

mines the existence of high-order-mode bands available for coupling. In general,

guides with increased channels widths support better-confined (i.e. with decreased

propagation losses) high-order modes; additionally, coupling tends to occur for

modes of higher order, which leads to narrower stop-band widths. As an exam-

ple, channel widths of ≈0.5, 1.0 and 1.5 µm respectively yielded 30-, 17- and

9-nm 10dB bandwidths. High-order-mode losses are in general at least one order

of magnitude larger than those of first-order modes and in general have a much

larger influence on the stop-band edge slopes.

Multi-mode propagation may considerably affect the transfer functions of short

waveguides due to wave interference at the PC guide output. Naturally, this effect

is less noticeable if the losses of forward-propagating high-order modes are much

higher than those of zero-order-modes; this was in fact the case for the narrowest-

channel-width waveguide Type investigated. The stop-band extinction with re-

spect to the pass-bands were on the order of 10dB for 30-µm-long waveguides of

Types 2 and 3 (overlooking the deep notches caused by multi-mode interference)

and ≈20dB in the Type 1 case. Increasing the waveguide lengths to 80µm causes

the extinction to increase by almost 10dB in all cases. The larger extinction ob-

served for Type 1 waveguides is due to the fact that the secondary co-propagating

symmetric modes existing within the stop-band wavelength range are much higher

than in the other two Types.
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Due to a large uncertainty in the coupling efficiency between lensed fibers and

ridge waveguides, insertion losses were estimated to be overall anywhere between

5 and 10dB.

Reflectivity measurements revealed small peaks at transmission stop-band

wavelengths, however the reflected power level was everywhere comparable to

that observed from a straight reference ridge waveguide. Moreover, compared to

the reflectivity obtained from a W3(M) waveguide band-gap - which involves the

coupling of exclusively zero-order mode waves-, the reflected power was observed

to be at least 10dB lower. This shows that coupling to high-order asymmet-

ric backward-propagating modes yields considerably less powerful distributed-

feedback back-reflections, either due to large propagation loses or to a poorer

coupling to fundamental modes of the access waveguide.

6.4 Single-line-defect Waveguide:

Γ-K Direction

The simplest way of realizing a single-mode PC waveguide is to make the defect

region sufficiently narrow. A W1(K) waveguide, formed by removing a single row

of holes in the Γ-K direction of a triangular lattice, is a classical example of single-

mode PC waveguide, with a single bound-mode band within the bulk-crystal band-

gap. Due to the very narrow channel, a very strong coupling between counter-

propagating waves at the Brillouin-zone boundary is available, such that even with
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short waveguide lengths, considerable power extinction at band-gap frequencies

are obtained, together with large band-edge group delays. On the other hand,

a narrow channel yields larger losses [10], which may seriously deteriorate the

available band-edge group delays.

In order to experimentally determine the filtering properties offered by such

waveguides, a series of 10-µm-long W1(K) waveguides were fabricated and tested

in the same fashion as in the previous sections. The chosen lattice constant was

a = 350nm, to yield a band-gap within the wavelength range of the measurement

instruments. Three devices with different r/a ratios -obtained by proper choice of

current doses during the e-beam lithography step- were realized; a SEM picture of

a representative device is shown in Fig. 6.21. Inspection of SEM pictures revealed

that the fabricated crystals had 0.25 < r/a < 0.29.

Figure 6.21: SEM image of fabricated 10-µm W1(K) waveguide.

The TE band-structure of a waveguide with r/a = 0.27 is shown in Fig. 6.22(a).

A close-up of the region within the dotted lines is displayed in Figure 6.22(b),

together with the transmitted power spectrum of one of the waveguides. The

187



transmission stop-band can be related to the non-existence of Bloch modes at

frequencies below a/λ ≈ 0.219.
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Figure 6.22: (a) Band-structure for a W1(K) waveguide with nTE = 3.27 and
r/a=0.27. (b) Close-up of the region within dotted lines in 6.22(a) and corre-
sponding transmission spectrum.

Figure 6.23 shows the stop-band-edge shift for increasing values of r/a, a trend

followed by the calculated band-edges at the Brillouin-zone boundary. The r/a

values in the graph gave band-edge eigenfrequencies corresponding to the -20dB

points of the transmitted power curves. The refractive index was nTE = 3.27 in

all cases, as in the sections above. Notice that the transmitted power spectrum

of a simple ridge waveguide is also plotted in Fig. 6.23, from which a pass-band

insertion-loss of approximately 10dB can be estimated 7. The stop-band extinction

with respect to the pass-band is roughly 30dB in all cases, quite impressive for

the short waveguide length.

Figures 6.24(a) and 6.24(b) show power transmission, relative Group Delay

(GD) and Differential Group Delay (DGD) for the devices with r/a = 0.255

7Once again, given the ≈ 3dB uncertainty in the ridge waveguide transmitted power, the
actual insertion loss is expected to be anywhere between 8-11dB.
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Figure 6.23: Transmitted power for W1(K) waveguides of varying r/a ratios. The
values on the figure were obtained by matching the -10-dB wavelength (relative
to the passband), of each curve to the band-edge eigenvalue at the Brillouin-zone
boundary.

and r/a = 0.270 respectively. The relative GD was obtained by subtracting the

measured group delay from a simple ridge waveguide from those of the PC guides.

The DGD, obtained from Jones the Matrix method 8 gives the modulus of the

difference between group delays for TE and TM modes. Since no bulk band-gap

for TM modes exist, it is reasonable to say that a very small extra delay (due to

the crystal structure) is incurred by TM waves when traversing the 10-µm region.

As such, the fact that the DGD is roughly the same as the relative group delay

is a good indication of the correctness of this assumption. Notice also that the

curves increase by roughly 0.4ps towards the band-gaps, from their values at the

highest frequencies. This is also in agreement with the theory from Chapter 3.

8See Chapter 5
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In absolute terms, the TE group delay is quite modest, however impressive when

compared to the maximum values obtained from much longer structures such as

the 80µm W3(M) waveguide above. The low group delay levels are most likely due

to extremely high propagation losses, as predicted in Chapter 3.
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Figure 6.24: Transmitted power, DGD and Relative GD for (a) r/a = 0.26, (b)
r/a = 0.27.

The large relative GD and DGD peaks are most likely artifacts from the mea-

surement. The peaks in Figs. 6.24(a) and 6.24(b) are at wavelengths where the

power transmission is extremely low. One possible source of measurement artifacts
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is as follows: as explained in Chapter 5, GD and DGD are calculated from the

Jones matrix of the measured device. The determination of the Jones matrix is

done by performing a series of transmission intensity measurements for incidence

with four different SOPs. Occasionally, in devices presenting very large PDL, one

of the chosen input SOPs may produce an extremely low power level at the device

output that falls below the reliable power measurement range of the instrument.

The generated Jones matrix will then yield a considerable measurement error. In

any case, no clear feature in the transmission amplitude transfer function indicate

the existence of real group delay peaks, therefore, the existence of a real group

delay peaks is very unlikely.

6.5 General Summary and Conclusions

The experimental characterization of four different PC structures was reported

in this chapter: a short (10µm) rectangular lattice of holes providing a low-pass

transmission transfer function with relatively low insertion loss, low modal reflec-

tivity and a 20dB stop-band extinction; a W3(M) waveguide presenting a small

( 10nm) stop-band for TM polarization and slow and dispersive propagation at the

stop-band edges; a series of short asymmetric multi-mode line-defect waveguides

offering transmission stop-bands of more than 20nm and low modal reflectivity;

a 10-µ-long single-mode, single-line defect PC waveguide in the Γ-K direction

of a triangular lattice presenting a very high extinction stop-band and very low

band-edge group velocities.
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An overall conclusion of this chapter is that the PC structures studied (waveguides

or gratings) offer very good prospects for the realization of very compact, broad-

band passive rejection filters that can be monolithically integrated within a com-

plex PIC. Very high transmission extinction can be obtained from very short PC

lengths; stop-band widths are in general very wide, resulting mainly from the large

index discontinuities involved; insertion losses are relatively high, however can be

improved by proper design of ridge-to-PC transitions; stop-band positioning can

be realized by tuning of the PC. Even though further work is necessary towards

reducing insertion loss and modal reflectivity, the realization of rejection filters is

the most direct and straightforward application of the PC waveguides studied.

Low group velocities were found at stop-band edges in some of the studied

waveguides, however the reduction of light speed was quite low and limited to a

small bandwidth. High propagation losses were in great part responsible for the

low group delays observed; at the same time, very high dispersion was observed at

the band-edges, even in the presence of high losses. Thus band-edge dispersion is

still a very promising property of PC waveguides for pulse-shaping applications.
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Chapter 7

Summary, Conclusions and

Future Work

7.1 Summary and Conclusions

The main purpose of the present work was the development of novel appli-

cations for quasi-2D Photonic Crystals (PCs) in InP-based Photonic Integrated

Circuits (PICs) for optical communications. The character of the investigation

was exploratory, as the complex wave-propagation properties in PCs are generally

not easily elucidated and not immediately usable in most common established

PIC applications. At the same time, the exploration was biased towards practical

applications, keeping in mind aspects of propagation in PCs that could be under-

stood or achieved in a straightforward manner, or those that could not be easily

avoided.

Line-Defect Waveguides

Focus was given to the investigation of slow and dispersive propagation in

PC line-defect waveguides, which so far seems to be the strongest asset offered
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by these structures, specially considering the high losses found in deeply etched

crystals. The theoretical assessment was partly based on crystal band-structure

calculations, numerical (Time-Domain) simulations and simplified analytical mod-

els, which contributed in a complementary way to the overall built-up knowledge:

from the calculated band-structures one obtains a rough idea of spatial wave prop-

agation by inspection of the available Bloch modes at specific frequency ranges

and their associated dispersion characteristics; from simulations, one obtains in-

formation from realistic structures, which might not be immediately predictable

from band-structures or simplified analytical models alone; from analytical mod-

els, one gains a clear insight on the physical mechanisms involved, as well as of

the most influential parameters to the phenomena observed either in simulation

or experimentally.

An attempt to explain slow and dispersive band-edge propagation in finite

PC line-defect waveguides in terms of 1D Coupled-Mode Theory (CMT) was

realized, with results confirmed experimentally for band-gaps at the Brillouin-

zone boundary. The physical mechanism described by CMT is the coupling of

counter-propagating one-dimensional waves caused by a periodic perturbation of

the propagation medium, in exactly the same way as in Distributed-Feedback

(DFB) mirrors.

Generalized CMT equations for coupling of modes of different orders were the-

oretically investigated for modelling the propagation around stop-bands formed at

anti-crossings of Bloch mode bands away from the Brillouin-zone boundaries. The
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generalized equations were shown produce very similar results to those obtained

from exact simulations, evidencing the validity of the analytical approximation.

Following this, an assessment of the various parameters influencing the PC

waveguide transfer-functions was carried out, assuming the validity of the analyt-

ical model. The following conclusions were reached regarding band-edge propa-

gation in PC waveguides: the transmission and reflection transfer-functions of a

finite PC guide at the edges of a band-anti-crossing stop-band present a series of

Fabry-Pérot-like resonances related to the finiteness of the structure. A maximum

transmission group delay is found at the first transmission maximum outside of

the band-gap; the maximum delay is larger the narrower the bandwidth of the

transmission peak, such that fundamentally large delays can never be achieved

with large bandwidths. Additionally, large propagation losses are detrimental of

the maximum achievable group delay, apart from the power transmission level.

It must be pointed out nonetheless that experimental evidence on the validity

of the generalized CMT expressions for description of propagation at band anti-

crossings has been found, at least as far as the prediction of stop-band widths.

Initial evidence of this had already been reported in [1] in similar PC guides.

The lowest observed Group Velocity (GV), from a three-line-defect waveguide,

was 0.17·c, very close to the the smallest reported in the literature in multimode

waveguides, ≈ 0.13 · c [2]. A very large Group Velocity Dispersion (GVD) (≈

0.7ps/nm) was observed concomitantly with the enhanced band-edge group delay.

The GVD remained within the same order of magnitude over ≈1nm.
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The propagation losses observed were one order of magnitude higher than the

lowest reported in similar systems [3, 4]; it must be pointed out the in the latter

case the epitaxial structures were optimized for lower losses (guiding layers were

>0.9µm thick) and waveguides were considerably wider (these were Γ-K-oriented

rather than Γ-M as in our case). Moreover, our epi-structure included a p-doped

upper InP cladding topped by a highly conductive InGaAs layer which certainly

added up to the propagation losses. As such, in view of the large GVD obtained

in spite of the large losses, one can infer the good potential of employing PC

waveguides in pulse-shaping applications.

Notice that the GV values pointed out above are at least one order of mag-

nitude larger than the lowest reported for Si-membrane, single-line defect wave-

guides [5], which present both lower losses and a considerably larger coupling

coefficients. The present work also shows the evidence of the availability of much

lower group velocities in single-line-defect waveguides in InP deeply etched crys-

tals, despite the high propagation losses [6].

All things considered, this study was an attempt towards understanding the

filtering properties of PC line-defect waveguides and their limitations and appli-

cations in optical signal processing in monolithic PICs.

Band-pass and Notch Filters

One obvious application of photonic band-gaps is the realization of extremely

compact band-pass or notch filters. This objective was pursued in multi-mode
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line-defect waveguides and one bulk PC lattice. In each case, a mechanism was

devised for the reduction of modal back-reflections from the filter input.

Multi-mode waveguides in general present wide (typically > 10nm) transmis-

sion stop-bands related to the anti-crossing of defect-mode Bloch bands of different

orders. Roughly, the formation of the stop-band is related to coupling of counter-

propagating modes of different orders by an effective waveguide-wall corrugation.

The large width of transmission stop-bands can be attributed to the very strong

wave-coupling stemming from the large index discontinuities and index-steps of-

fered by the PC waveguide. Evidence of multi-modal propagation was observed in

power transmission measurements in the form of deep stop-band notches and pass-

band oscillations; this clearly indicates the necessity of managing mode-coupling

and propagation for the definition of proper filter transfer-functions. The inves-

tigated waveguides were composed by PC walls displaced longitudinally by half

a lattice constant, such that the stop-band-spanning coupling between modes of

different parities -and therefore of different orders- was forced. The purpose of

this design was the reduction of fundamental-mode back-reflected power, since it

was expected that distributed-feedback waves of high order would couple preferen-

tially to high-order access waveguide modes. The detected reflected power levels

were in fact considerably lower than observed from waveguides displaying same-

order-mode coupling. The result may however be partly attributed to the larger

propagation losses suffered by high-order PC waveguide modes. Finally, a 30µm

long waveguide was demonstrated with a 40-nm transmission stop-band with 20dB

extinction that could be used as a coarse WDM notch-filter. The insertion loss of
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this device (and others tested) exceeded 5dB, however this could in principle be

improved by proper design of PC waveguide/ridge waveguide interfaces.

A 10-µm rectangular lattice bulk PC was investigated for application as a

low-pass filter that could be used for rejection of the entire L optical commu-

nications band. The maximum stop-band extinction was close to 20dB and the

pass-band insertion loss was below 3dB. Improvement of the extinction and band-

edge slopes could in principle be realized by increasing hole-sizes and positioning

of the ridge access waveguides. The comparison between measured and FDTD-

calculated results was very good. In order to reduce the back-reflection levels, the

PC structures were tilted by a few degrees with respect to the incident beam, in a

scheme similar to what is used for mitigation of facet reflectivity in Traveling-wave

Semiconductor Optical Amplifiers (TW-SOAs) [7]. This scheme produced a good

( 15dB) reduction of modal reflectivity, with respect to un-tilted gratings.

Fabrication

The fabrication process for InP-based PICs incorporating deeply etched PCs

described in Chapter 4 is one of the principal achievements of the present inves-

tigation. The technique was developed from a process used to produce devices

based on a mature PIC platform which had previously been used to success-

fully produce a large set of working components: Distributed-Feedback (DFB) or

Sampled-Grating Distibuted-Feedback (SG-DBR) lasers, semiconductor optical

amplifiers, photodetectors, interferometric wavelength converters, traveling-wave

photodetectors, etc. The PICs produced with this platform are composed of
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weakly guiding shallow ridge waveguides that can be electrically pumped through

metal contacts. Active gain is provided by InGaAsP quantum-wells grown on top

of the InGaAsP guiding layer which is in general selectively removed from the

passive regions of the circuit previous to an InP regrowth step. Even though the

devices fabricated in this work did not present optically active material regions (at

least in the optical communications wavelength range), electrical pumping of se-

lected waveguides was shown to be possible. The steps necessary for the inclusion

of selected active regions within the PIC would not require substantial changes to

the process; in fact it would only require the inclusion, without modification, of

all steps previous to and including the top InP regrowth.

The fabricated test devices offered enough flexibility to allow the character-

ization of various different types of PC structures; in addition, the mechanism

used for light insertion and extraction facilitated considerably the measurement

procedure and yielded reliable and repeatable results.

It must be noticed that a similar platform has been used to produce extremely

compact coupled-cavity tunable lasers composed of PC line-defect waveguides [8]

and lasers with PC mirrors [9].

7.2 General Conclusions

Most of the more interesting properties of PC structures originate from res-

onant interference effects. The main application-limiting factor of deeply etched

PC structures are, as such, radiation losses due to hole imperfections. Take for
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instance slow band-edge propagation in line-defect waveguides: lower group ve-

locities are observed for lower propagation losses, given that the slow-down of

light is a result of the efficient interference of waves partially reflected along the

waveguide length. Clearly, reduction of out-of-plane radiation losses is essential

for the development of meaningful PC applications.

On the other hand, while the quality of the deeply etched PCs still needs

considerable improvement, development of useful applications is still be possible

if reduced interaction with lossy crystal regions is established and resonant regimes

are avoided. This is the case of the grating filters, or even the notch filters based

on short PC line-defect waveguides studied in Chapter 6. It is important to

notice also that band-edge dispersion in line-defect waveguides is found to be

quite large even in the presence of high propagation losses and thus constitute a

very interesting asset for pulse-shaping applications.

A very important point in terms of PC analysis an design is that the simple

study of band-structures only yields limited information regarding wave propaga-

tion and ultimately filter transfer functions. The finiteness of real PC structures

has a decisive influence on the obtained filter transfer functions and so must be

taken somehow into account. Numerical simulations, for instance using the FDTD

method, yield very realistic transfer functions, allowing to some extent for general

conclusions to be taken regarding the physical mechanisms involved. As much

as possible, however, simplified analytical models should be employed to describe

wave phenomena in PCs, so that the PC transfer functions can be understood in

a general way. In summary, the analysis and design process should include these
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three approaches in a synergistic way so that a complete understanding of the PC

transfer functions can be attained.

Finally, it must be pointed out that the 2D band-structures used in the present

work could be quite well correlated with experimentally obtained data. This fur-

ther validates the assumption that effective 2D PC band structures approximate

quite well those of equivalent quasi-2D PCs.

7.3 Future Work

Suggested future work based on the presented results is detailed in what fol-

lows, divided in three categories.

Novel Devices

The most useful PC properties offered by the fabricated photonic crystals

are the high, controllable modal reflectivity, the relatively large group velocity

dispersion and the broad, controllable transmission stop-band widths; these may

be obtained from very compact structures, with lengths of a few tens of microns,

and in spite of the large crystal radiation losses. Based on these results, the

following possibilities should be immediately investigated:

The fabrication of devices with active QW regions would require very small

modifications to the current process. Extremely compact laser sources could thus

be implemented without much trouble. The demonstration in [8], realized in a

similar PIC platform, shows the excellent prospects for the realization of com-
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pact, tunable devices. Sources thus fabricated could be used to replace consid-

erably larger monolithically integrated SG-DBR lasers, for instance in all-optical

wavelength-converters [10]. On the other hand, the structures demonstrated in [8]

were limited in terms of wavelength tunability, which was not continuous, and in

efficiency, due to high levels of non-radiative recombination in the PC material.

Investigation of novel, better-performing, compact tunable PC laser structures

thus constitute a very interesting line of research.

One interesting possibility still not experimentally investigated is the realiza-

tion of pulsed, mode-locked laser sources based on PC waveguides. Dispersion

management provided by the photonic crystals could in principle be used for

pulse-width enhancement.

Immediately viable is the realization of Gires-Tournois-interferometer all-pass

filters. These structures offer a flat reflectivity response and a series of phase reso-

nances that can be used for dispersion compensation [11]. The structures could be

composed of passive, low-loss, electrically pumped ridge waveguides and PC mir-

rors whose reflectivities can be tuned through the crystal properties. The results

from Chapter 6 demonstrate the feasability of good quality and highly reflective

mirrors for this particular application. Active control of the phase response could

be realized by current injection into the ridge waveguides.

The realization of PICs incorporating the band-pass and notch filters demon-

strated in Chapter 6 would ultimately prove the usefulness of such structures. Ap-

plications would include C-to L- band and two-stage interferometric wavelength

conversion, or even cross-gain modulation wavelength conversion.

206



On the other hand, the reflectivity characteristics have to be more closely

investigated, as the presented results do not show whether sufficient suppression

is obtained. This could be carried out by characterization of spectral resonances

in cavities including active ridge waveguides and filter structures as mirrors. At

the same time, an optimization of the ridge waveguide/PC waveguide interfaces

must be carried out for further improvement of filter insertion and return losses.

Clearly, alternative filter functions can be produced by proper choice of bulk

PC structures, as discussed in the first section of Chapter 6. Filters with narrower

pass-bands based on PC microcavities have in fact been demonstrated in [12],

and could easily be investigated, specially regarding the reflectivity suppression

mechanism presented in this work.

Fine tuning of line-defect waveguide stop-band position by current injection

is another very interesting concept to be explored. In InP SG-DBR lasers, index

changes of 0.1% are typically are achieved [13], leading to grating-mirror reflectiv-

ity shifts on the order of a few nanometers. Shifts of the same order of magnitude

can be expected for PC waveguides. This could prove a convenient way of tuning

the large dispersion experienced by pulses propagating at stop-band edges.

Fabrication Technique

The Cl2-Ar ICP etching recipe used in this work is not completely optimized

and could be further improved for the achievement of much deeper holes and

higher aspect-ratios, with better selectivity with respect to the SiO2 mask. At

the same time, optimization of the Cl2-N2 recipe would also be desired given

207



the possibility of achieving extremely smooth hole sidewalls. At the same time,

etching schemes using alternate steps that successively etch the semiconductor

surface and passivate the sidewalls could also be explored. This scheme has been

shown to produce very high aspect-ratio structures in Silicon, and is generally

used in Micro-Electro-Mechanical Systems (MEMS) fabrication [14]. The major

difficulty in developing a Cl2-based recipe using this scheme is the formation of

non-volatile etch-products such as InClx, which are redeposited on the etched

surfaces. The build-up of such etch-products eventually completely stops the

substrate etching.

The improvement of propagation losses could in principle be realized through

the design of a proper epitaxial structure, without compromising the perfor-

mance of the additional PIC components. As mentioned in Chapter 1, order-

of-magnitude lower losses were obtained from properly designed slab waveguide

structures.

The present fabrication process can be yet simplified by realizing the PC de-

finition step previous to the definition of ridges and mesas. This could be very

convenient for the fabrication of devices in which PC alignment within the circuit

is not critical.

Finally, the investigation on the possibilities of incorporation of InGaAsP mem-

branes within monolithic PICs should be carried out, as these structures present

potential advantages with respect to deeply etched PCs regarding propagation

losses.
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Basic Photonic Crystal Research

The good coincidence between calculated band-structures of 2D and 3D weakly

guided PCs has not yet been rigorously explained, neither have strict general rules

regarding the applicability of the effective 2D approximation been established.

Even though much experimental evidence is available in favor of the utilization of

effective 2D PC band-structures, a final in-depth theoretical analysis is in order.

One interesting possibility regarding the establishment of stricter rules for

the approximation could be an analysis in terms of the coupling of slab modes,

bound and radiative, by the etched holes, in a perturbation theory approach. This

could furthermore lead to the development of useful guidelines for the design of

epitaxial structures optimized for low out-of-plane radiation losses, based on the

optimization of slab-mode field profiles.

At the same time, an interesting problem is the correlation between feature

non-uniformity and achievable PC properties. A study of this problem could

yield information regarding the necessary fabrication tolerances. This would be

particularly useful for deeply etched crystals which in general present very rough

hole sidewalls due to the aggressive (though necessary) etching processes. An

interesting and simple study could be carried out by comparing the properties of

equivalent PCs etched with Cl2:Ar and Cl2:N2.

Finally, different PC waveguide configurations should be investigated provid-

ing larger, broad-band, band-edge dispersion characteristics. As discussed in the

text, in line-defect waveguides these properties are linked to the wave-coupling
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introduced by the crystal medium, with losses playing an important role. On

the other hand, one interesting possibility would the utilization of crystal-guided

modes close to the k = 0 point, which, as pointed out in Chapter 3, display slow

group velocities simply because of the guiding mechanism. In this case, power

transmission would be spectrally flat as long as one were able to couple to such

waves in a wavelength-independent way. These modes however are in general of

high order, thus requiring more involved coupling mechanisms. In addition, these

modes are expected to be considerably lossy,due to an increased interaction of the

field with the crystal holes.
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