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Thermal and driven noise in Brillouin lasers
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Owing to their highly coherent emission and compact form factor, Brillouin lasers have been identified as a
valuable asset for applications including portable atomic clocks, precision sensors, coherent microwave synthe-
sis, and energy-efficient approaches to coherent communications. While the fundamental emission linewidth of
these lasers can be very narrow, noise within dielectric materials leads to drift in the carrier frequency, posing
vexing challenges for applications requiring ultrastable emission. A unified understanding of Brillouin laser
performance may provide critical insights to reach new levels of frequency stability; however, existing noise
models focus on only one or a few key noise sources, and do not capture the thermo-optic drift in the laser
frequency produced by thermal fluctuations or absorbed power. Here, we develop a coupled-mode theory of
Brillouin laser dynamics that accounts for dominant forms of noise in noncrystalline systems, capturing the
salient features of the frequency and intensity noise for a variety of systems. As a result, theory and experiment
can be directly compared to identify key sources of noise and the frequency bands they impact, revealing
strategies to improve the performance of Brillouin lasers and pave the way for highly coherent sources of light
on a chip.
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I. INTRODUCTION

In recent years, the highly coherent emission produced
by Brillouin lasers has enabled applications including com-
pact atomic clocks [1], visible light sources [2], precision
gyroscopes [3–5], ultrastable microwave generators [5,6], and
energy-efficient architectures for optical communications [7].
Key to these applications is the remarkable properties of
Brillouin lasers that enable narrow fundamental emission
linewidths [5,6,8–12]. While these fundamental linewidths
can reach subhertz levels [5,6,9,12,13], thermal and driven
sources of noise lead to frequency instability that produces
drift in the laser emission [14–16]. Predictive models cap-
turing all key noise sources may provide the insights to
overcome these challenges and pave the way to the hertz-level
frequency stability desired for applications such as precision
time-keeping and spectroscopy. However, empirically based
models capturing the key features of Brillouin laser perfor-
mance have not been developed.

To reach the levels of performance demanded by
precision applications for chip-scale Brillouin lasers,
the noise spectra of these lasers must be understood and
predicted. Many facets of Brillouin laser performance have
been described by models of transferred and fundamental
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noise [9,17–20]. Coupled-mode and envelope theories
predict phase and relative intensity noise transferred to the
laser emission from the pump [9,17,19], and have been
used to derive a Schawlow-Townes-like linewidth that
results from noise inherent to Brillouin scattering (i.e.,
the analog of spontaneous emission in the gain medium)
[9]. However, existing models neglect photothermal and
thermorefractive noise, which constitute fundamental
sources of noise within dielectric resonators, and must
be included to create predictive models. Investigations of
the fundamental frequency stability of dielectric resonators
lay the foundation for the understanding these effects as
well as thermally driven sources of noise arising from
Brownian, thermoelastic, and ponderomotive effects
[14–16,21,22].

In this paper, we develop a comprehensive model for
Brillouin laser dynamics in noncrystalline dielectric res-
onators such as silica microresonators [6,9,12,19,23,24] and
all-waveguide optical cavities [2,5,25–28]. By incorporating
thermorefractive and photothermal noise, this model captures
the noise sources critical to an understanding of the perfor-
mance of on-chip Brillouin lasers [15,16]. To validate our
model, we compare the predicted noise spectra with measure-
ments obtained from a Si3N4 photonic integrated Brillouin
laser [2,5]. Using experimentally derived parameters, these
predictions capture the key features of the experimental laser
spectra including frequency and intensity noise. By identify-
ing and quantifying key sources of noise and the frequency
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bands they impact, these results reveal strategies to improve
the performance of Brillouin lasers and pave the way for
highly coherent sources of light on a chip.

The paper is organized as follows: Section II describes
the physical origin of the dominant noise sources in noncrys-
talline Brillouin lasers. Section III outlines the coupled-mode
theory capturing the dominant forms of noise. The laser’s am-
plitude and phase dynamics are derived, including the impact
of feedback that locks the pump frequency to the laser res-
onator. Thermorefractive and photothermal noise are modeled
by coupling the optical-mode dynamics with the temperature
field. We add temperature-dependent optical-mode frequen-
cies to the coupled-mode dynamics and solve the stochastic
dynamics of the temperature field that include drive terms
associated with fundamental thermal fluctuations as well as
the heat flux produced by the optical field. Section IV com-
pares model predictions to measured frequency and intensity
noise power spectra for an integrated waveguide Brillouin
laser. This comparison, and quantitative agreement, enables
the features of the noise spectra to be identified and under-
stood and therefore, through the equations given in Sec. III,
to be controlled. Section V summarizes the key results of the
paper.

II. SOURCES OF BRILLOUIN LASER NOISE

The performance of noncrystalline Brillouin lasers is de-
termined by spontaneous emission (fundamental noise) [9],
noise produced by both fundamental and driven thermal fluc-
tuations, and noise transferred from the pump laser. In this
section, we describe the qualitative nature and physical origin
of each of these noise sources. In later sections, we show how
these noise sources are modeled and provide expressions for
derived frequency and intensity noise power spectra.

Fundamental noise is inherent to the laser amplifica-
tion process. For a Brillouin laser, this noise is produced
by spontaneous Stokes emission from thermally populated
phonon modes. This effect has been explored in models
utilizing coupled modes [9,18] and envelopes [19], where
a Schawlow-Townes-like linewidth describes the frequency
noise [9] and the intensity fluctuations exhibit relaxation os-
cillations [18,19].

Thermorefractive noise occurs when temperature fluctua-
tions within a dielectric resonator lead to local shifts in the
index of refraction through the thermo-optic effect as seen in
Fig. 1(d). Consequently, a fluctuation in temperature can shift
the resonant frequencies of a cavity [14], illustrated by the
path from Fig. 1(d) to Fig. 1(a). Because this noise source
scales with the inverse resonator mode volume, thermorefrac-
tive noise can be a critical form of frequency instability within
microresonators.

Photothermal noise results from frequency fluctuations
originating from thermo-optic shifts in the index of refraction
that are driven by optical absorption of fluctuating intracavity
power [Fig. 1(c) to Fig. 1(d)]. These power fluctuations arise
from both fundamental amplitude noise of both pump and
Stokes modes within the resonator as well as relative intensity
noise (RIN) present in the source laser used to drive Brillouin
lasing, Fig. 1(b).

FIG. 1. (a) Physical origins of thermo-optic noise in a stimulated
Brillouin scattering (SBS) laser with resonant frequency f0. (b) The
pump laser power noise (relative intensity noise, RIN) injects relative
power shifts, δPp, into the resonator. (c) These pump fluctuations, and
the Stokes mode’s power fluctuations, are absorbed by the resonator.
(d) Intrinsic temperature fluctuations, the source of thermorefractive
noise, and temperature fluctuations from the absorbed power, the
source of photothermal noise, change the index of refraction. This
perturbs the resonant frequency (δ f ), adding noise to the laser.

Transferred pump noise can be imprinted on the Brillouin
laser emission. While stimulated Brillouin scattering (SBS) is
known for producing laser emission with noise that is drasti-
cally compressed compared to the pump, this filtering ability
is ultimately limited by relative decay rates of the optical and
acoustic modes [17]. In addition, RIN of the pump also drives
intensity fluctuations of SBS emission, impacting the power
stability and leading to one source of photothermal noise.

Other noise sources are present within Brillouin lasers and
require careful analysis in systems, such as microtoroids or
crystalline resonators, where radiation pressure and thermal
expansion are significant compared to the thermo-optic ef-
fect. These ponderomotive and thermoelastic effects as well
as Brownian motion of the resonator structure are small
compared to the noise sources described above within the
noncrystalline SBS lasers considered here [15,16].

III. THEORY

To model Brillouin laser dynamics, we use a coupled-mode
theory, treating the optical and acoustic modes as mean-field
(lumped) elements [9,18]. The validity of this model requires
that the temporal changes in the electric field amplitude, the
loaded optical decay rate, and the gain bandwidth are all much
smaller than the free spectral range and relevant resonance
frequencies of the resonator; i.e., intermodal scattering is neg-
ligible and the rotating wave approximation (RWA) is valid.
Owing to the relatively large strength of electrostriction, we
neglect effects produced by the Kerr nonlinearity, i.e., self-
and cross-phase modulation, for example, valid for reason-
able intracavity powers in silica resonators (∼ 100 mW), and
relatively small refractive indices. All theory presented in the
following section is generalized so that it is independent of
the material and geometry that the noncrystalline SBS laser
consists of.

Under these assumptions, Brillouin laser dynamics can
be modeled using the Hamiltonian H = H0 + Hint where H0
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describes the uncoupled dynamics of the pump, Stokes, and
phonon modes,

H0 = h̄ωpa†
pap + h̄ωSa†

SaS + h̄�b†b, (1)

and Hint quantifies the coupling of these modes through elec-
trostriction,

Hint = h̄ga†
paSb + h̄g∗b†a†

Sap, (2)

where we neglect the effect of cascaded-order lasing. Here,
ωp, ap, and a†

p (ωS , aS , and a†
S) denote the pump (Stokes) fre-

quency and annihilation and creation operators, respectively,
while �, b, and b† are the phonon mode frequency and anni-
hilation and creation operators. The parameter g is a coupling
rate quantifying the electrostrictive interaction between the
pump, Stokes, and phonon modes which is determined from
the spatial overlap of the acoustic and optical modes and the
photoelastic tensor [18].

Using this Hamiltonian and adding the effects of optical
and acoustic dissipation as well as an external pump, we
derive equations of motion for the SBS laser. Under the as-
sumption that pump, Stokes, and phonon modes are phase
matched, i.e., ωp = ωS + �, we find Heisenberg-Langevin
equations of motion, evaluated in a rotating frame about the
resonance frequency of each field, given by

ȧp = − 1
2γpap − igaSb + √

γextFext + ηp, (3)

ȧS = − 1
2γSaS − ig∗b†ap + ηS, (4)

ḃ = − 1
2�b − ig∗a†

Sap + ξ, (5)

where �, γp, and γS are the respective acoustic, pump, and
Stokes mode decay rates, and ηp, ηS , and ξ are the Langevin
forces for the optical and acoustic modes. For consistency
with thermodynamics, these losses and Langevin forces return
the perturbed system to thermal equilibrium in the absence
of electrostrictive coupling and external driving, and are con-
sistent with the fluctuation-dissipation theorem in the limit of
validity for the RWA. The external decay rate γext accounts for
the optical losses that occur when the laser resonator is cou-
pled to a bus waveguide and quantifies the fraction of supplied
pump power that can excite the resonator. The time-dependent
complex amplitude Fext accounts for the effects of the pump
laser, including noise, and is normalized so that the on-chip
pump laser power can be represented by Pp = h̄ωp|Fext|2.

The Langevin forces ηp, ηS , and ξ capture the quantum and
thermal fluctuations of the optical and acoustic fields, respec-
tively, and can be modeled by zero-mean Gaussian variables
with white power spectra [9,18,19]. The two-time correlation
properties for these force are given by

〈η†
m(t )ηm′ (t ′)〉 = γmNth,mδ(t − t ′)δmm′ , (6)

〈ηm(t )η†
m′ (t ′)〉 = γm(Nth,m + 1)δ(t − t ′)δmm′ , (7)

〈ξ †(t )ξ (t ′)〉 = �nthδ(t − t ′), (8)

〈ξ (t )ξ †(t ′)〉 = �(nth + 1)δ(t − t ′), (9)

where Nth,m = (exp(h̄ωm/kBT0) − 1)−1 and nth = (exp(h̄�/

kBT0) − 1)−1 are the thermal occupation numbers of the op-

tical and acoustic modes, respectively, T0 is the temperature,
and h̄ and kB are the Planck and Boltzmann constants.

A further simplification of these dynamics can be obtained
when the phonon decay rate far exceeds the optical decay rates
(� � γm). Under these conditions, the phonon field amplitude
can be obtained in the quasistatic limit where the amplitudes
ap and aS evolve slowly compared to �, giving

b ≈ b̂ − i
2g∗

�
a†

Sap, (10)

where b̂ quantifies the thermal and quantum fluctuations of the
phonon field:

b̂ =
∫ t

−∞
dτ e− �

2 (t−τ )ξ (τ ). (11)

This approximation holds for frequencies significantly smaller
than the phonon decay rate. In Appendix A, we show that the
leading-order correction to Eq. (10) captures the frequency
noise transferred from the pump laser.

Inserting Eq. (10) into Eqs. (3) and (4), we find the effective
SBS laser equations of motion,

ȧp = − 1
2γpap − μaSa†

Sap + √
γextFext + hp, (12)

ȧS = − 1
2γSaS + μa†

papaS + hS, (13)

where μ = 2|g|2/�, quantifying the Brillouin coupling, is
proportional to the Brillouin gain [29], and hp = ηp −
igaSb̂ and hS = ηS − ig∗apb̂† are “phonon-dressed” Langevin
forces. We have neglected the effect of spontaneous emission
on the pump decay rate [18]. These forces describe how quan-
tum and thermal fluctuations of the optical and mechanical
modes impart colored multiplicative noise on the optical fields
through electrostriction. While these approximations repro-
duce much of the key physics of Brillouin lasers, one must
retain the first-order corrections to the quasistatic approxima-
tion taken above in Eq. (10) to recover the line-narrowing
properties of Brillouin lasers described by Debut et al. (see
Appendix A) [17].

A. Fundamental and driven thermal noise

To model thermo-optic noise, we add the stochastic heat
equation to our model, accounting for fundamental and op-
tically driven thermal fluctuations, and include the impact of
these thermal fluctuations on the laser dynamics. To capture
the latter, we add a zero-mean fluctuating frequency ω̂ j to the
laser equations of motion that is driven by the mode-volume-
averaged temperature field. This modification does not affect
the previous adiabatic elimination to a linear order expansion
of the optical beat note, given that ω̂p and ω̂S are approxi-
mately equal, which is valid for a large class of resonators.
With these modifications, Eqs. (12) and (13) become

ȧp = (−iω̂p − γp/2)ap − μaSa†
Sap + √

γextFext + hp, (14)

ȧS = (−iω̂S − γS/2)aS + μa†
papaS + hS, (15)
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where ω̂ j , derived using modal perturbation theory, is given
by

ω̂ j = −ω j

ng

∫
d3x

dn

dT
|E0(x)|2T (t, x). (16)

Here, ng is the group index, dn/dT is the thermo-optic co-
efficient, E0 is the volume-normalized electric field strength
in the cavity (i.e.,

∫
d3x|E0|2 = 1), and T (t, x) represents

temperature fluctuations about equilibrium [14]. The solution
to the driven heat equation given by

ρCṪ (t, x) − ∇ · κ∇T (t, x) = ζ (t, x) + q̇opt (17)

provides T (t, x), where κ is the thermal conductivity, C
is the specific heat capacity at constant volume, ρ is the
mass density, ζ (t, x) is a zero mean Langevin force driving
fundamental thermal fluctuations according to the fluctuation-
dissipation relation (see Ref. [14]), and q̇opt describes the heat
flux density produced by fluctuating optical power within the
resonator [29]. Here, q̇opt captures all changes in temperature
produced by the presence of optical energy, e.g., absorp-
tion or electrostriction plus mechanical dissipation. Together,
Eqs. (14), (15), and (17) provide a unified description of the
key physics that determine SBS laser dynamics in noncrys-
talline media (generalization to crystalline materials requires
the inclusion of thermal expansion). A rigorous treatment of
thermal expansion requires a treatment of the laser resonator’s
thermally driven mechanical motion as well as a modification
of Eq. (16) to include changes in the laser resonator brought
about by thermal deformations of the waveguide geometry.
These effects must be included in systems where thermal
expansion cannot be neglected.

B. Amplitude and phase decomposition

To explore the noise dynamics of the SBS laser described
by Eqs. (14), (15), and (17), we decompose ap and aS in terms
of phase and amplitude expressed by

ap = (αp + δαp)eiϕp, (18)

aS = (αS + δαS )eiϕS . (19)

Here αp and αS are time-independent, steady-state amplitudes
of the pump and Stokes mode, δαp and δαS represent fluc-
tuations about the steady-state amplitude, and ϕp and ϕS are
time-dependent fluctuating phases of the optical modes. The
steady-state amplitudes for the pump and Stokes modes (for a
single-order Brillouin laser above threshold) are given by (see
Ref. [18])

α2
p = γS

2μ
, (20)

α2
S = 1

μ

[√
γext|Fext|

αp
− γp

2

]
. (21)

We obtain the amplitude and phase dynamics by inserting
Eqs. (18) and (19) into Eqs. (14) and (15), linearize to first
order in fluctuating amplitude δα (assuming α � δα), and

TABLE I. Table of parameters for a Si3N4 waveguide resonator
[2]. The coupling rate g, acoustic decay rate �, and optical decay
rates γp,S are the same for the pump and Stokes mode.

g 1.54 kHz Electrostrictive coupling rate
� (2π )150 MHz Phonon decay rate
γext (2π )3.9 MHz External optical decay rate
γp,S (2π )6.8 MHz Loaded optical decay rate
μ 5.1 mHz 1/2 × Brillouin amplification rate
L 0.072 m Resonator length
σr 2.8 μm Radial mode width
σz 0.85 μm Vertical mode width
QL 28.5 × 106 Loaded quality factor
αabs 0.035 m−1 Absorption factor
Pext 0.042 W Frequency noise on-chip power
Pext 0.025 W RIN on-chip power
PS 0.006 W Stokes power
dn/dT 0.87 × 10−5 [21] Thermo-optic coefficient
ρ 2300 kg m−3 Plasma-enhanced chemical vapor

deposition (PECVD) silicon dioxide
density

C 1000 J (kg K)−1 Thermal silicon dioxide
Specific heat capacity

κ 0.00847 Power coupling
νg 2.06 × 108 m/s Optical group velocity

isolate real and imaginary parts, yielding equations for the
phase and amplitude of each mode:

ϕ̇p = −ω̂p + 1

αp
Im[h̃p] +

√
γext

αp
Im[F̃ext], (22)

ϕ̇S = −ω̂S + 1

αS
Im[h̃S], (23)

δα̇p = −
√

γext|Fext|
αp

δαp − 2μαSαpδαS + Re[h̃p]

+√
γext (Re[F̃ext] − |Fext|), (24)

δα̇S = 2μαpαSδαp + Re[h̃S], (25)

where h̃p = hpexp(−iϕp), h̃S = hSexp(−iϕS ), and F̃ext =
Fextexp(−iϕp). Because the coupling parameter μ is real when
perfect phase matching is satisfied, the phase and amplitude
dynamics decouple and can be analyzed independently. While
Eq. (22) describes the free running dynamics of the phase of
the optical mode driven by the pump laser ϕp, in practice the
pump laser is locked to the SBS resonator using a feedback
loop. Using a control theory model for this feedback loop,
shown in Appendix B, the impact of this form of laser control
can be determined. For the experimental case explored in this
paper, where the SBS resonator linewidth is large compared
to the pump laser linewidth (see Table I), ϕ̇p ≈ −ω̂p + ξext,
where ξext is a Langevin force modeling phase diffusion
and the linewidth of the pump laser. Under this same case,
the thermal effects described by Eq. (16) can be ignored in
Eqs. (24) and (25).

In the following sections, we use the dynamics described
by Eqs. (22)–(25) to model the frequency and intensity noise
of a SBS laser.
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C. Relative intensity noise

Relative intensity noise, produced by fluctuations of the
amplitudes δαp and δαS , leads to instability in the emitted
laser power. Equations (24) and (25) show that the RIN of
the Stokes mode has two sources: amplitude noise transferred
from the pump laser and fundamental fluctuations inherent
to Brillouin scattering [19]. Even for an ideal pump laser
(i.e., power stable), spontaneous Brillouin scattering is always
present, leading to amplitude noise.

The RIN can be expressed as an amplitude power spectral
density (PSD), using Eqs. (24) and (25) and δPS = 2PSδαS/αS

[18] we find

SRIN
S [ω] = 4

α2
S

∫ ∞

−∞
dτ eiωτ 〈δαS (t + τ )δαS (t )〉. (26)

To obtain an explicit expression for Eq. (26), we solve
Eqs. (24) and (25) in the Fourier domain, and use the sub-
stitutions �R = √

γext|Fext|/αp, �RIN = 2μαpαS , and δ f =√
γext (Re[F̃ext] − |Fext|), the latter representing amplitude

fluctuations of the pump laser, to yield

δαS[ω]

= �RIN(Re[h̃p[ω]] + δ f [ω]) + (−iω + �R)Re[h̃S[ω]]

−ω2 − iω�R + �2
RIN

.

(27)

When Eq. (27) is inserted into Eq. (26), the first-order Stokes
SBS laser RIN is described by the summation of two PSDs
(assuming no cross-correlations, i.e., pump power fluctuations
are independent of fundamental fluctuations 〈h̃S[ω]δ f [ω′]〉 =
0) given by

SRIN
S [ω] = SRIN

fund[ω] + SRIN
trans[ω], (28)

where SRIN
trans ∝ 〈δ f [ω]δ f [ω′]〉 and SRIN

fund contains correlation
terms of Re[h̃p[ω]], Re[h̃S[ω]], and cross-correlation between
the two. These two terms represent intensity noise produced
by spontaneous scattering inherent (fundamental) to Brillouin
lasing and by instability in the pump laser power (transferred).

In agreement with prior work (see Refs. [18,19]), we find
the (single-sided) fundamental (SRIN

fund) contribution to the RIN
given by

SRIN
fund[ω] = 8

α2
S

1∣∣�2
RIN − iω�R − ω2

∣∣2

{ |g|2(1 + 2nth )�γS[(γp − �R)2 + ω2]

2μ(�2 + 4ω2)
+ 1

4
(1 + 2Nth )

[
γS

(
�2

R + ω2
) + γp�

2
RIN

]}
, (29)

exhibiting a relaxation oscillation peak near �RIN. To connect
with experiment we express the pump-transferred contribution
to the intensity noise in terms of the (measurable) pump RIN
(SRIN

ext ). SRIN
trans can be expressed as

SRIN
trans[ω] = �2

RIN

α2
S

∣∣�2
RIN − iω�R − ω2

∣∣2

γextPext

h̄ωext
SRIN

ext [ω]. (30)

Here, SRIN
trans[ω] and SRIN

ext [ω] are both single-sided PSDs.
In addition to the PSD describing the intensity fluctuations

of the SBS laser, fluctuations of the total intracavity power are
critical to calculate the photothermal noise (Sec. III D 3). The
total intracavity power Ptot and fluctuations in the total power,
δPtot , are given by

Ptot ≈ h̄ω0vg

L

[
α2

p + α2
S

]
, (31)

δPtot ≈ h̄ω0vg

L
[2αpδαp + 2αSδαS], (32)

where second-order terms in fluctuating amplitudes have been
neglected. The PSD for the total RIN, relevant to photothermal
noise calculated in Sec. III D 3, is given by

SRIN
tot [ω] = 1

P2
tot

∫ ∞

−∞
dτeiωτ 〈δPtot (t + τ )δPtot (t )〉. (33)

This equation accounts for the transferred and fundamental
sources of RIN for both the pump mode and the Stokes mode
as well as cross-correlations between pump and Stokes ampli-
tude fluctuations (i.e., 〈δαpδαS〉 �= 0) [18]. The expression for
SRIN

tot is given in Appendix E.

D. Brillouin laser frequency noise

To model the frequency stability of noncrystalline chip-
integrated SBS lasers, we analyze the four dominant sources
of frequency noise: fundamental noise intrinsic to the physics
of SBS lasing, transferred frequency noise from the pump
laser, photothermal noise, and thermorefractive noise. Owing
to the distinct physical origins of each of these effects, we
assume that these noise sources are uncorrelated and that the
power spectrum is given by the sum of PSDs for each of these
processes:

S f [ω] = Sfund
f [ω] + STR

f [ω] + SPT
f [ω] + Strans

f [ω], (34)

where Sfund
f [ω], STR

f [ω], SPT
f [ω], and Strans

f [ω] respectively
denote the PSD for the fundamental, thermorefractive, pho-
tothermal, and transferred noise. In the following sections, we
characterize the PSD for each of these noise sources. The
fundamental and transferred pump frequency noise can be
derived directly from our coupled-mode model, whereas the
thermorefractive and photothermal noise require an analysis
of the heat equation that depends on the geometry of the
resonator.

1. Fundamental SBS noise

The fundamental noise can be derived using Eq. (23) when
ω̂S (thermal and power-driven frequency fluctuations) is ne-
glected, yielding a Schawlow-Townes-like linewidth whose
two-sided frequency PSD is described by

Sfund
f [ω] = γS

4π2α2
S

[
(Nth + 1/2) + �2/4

ω2 + �2/4
(nth + 1/2)

]
.

(35)
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The derivation of this result is described in previous works
[5,6,13,18,24]. Being intrinsic to Brillouin lasing, the funda-
mental noise sets the ultimate performance limits of an SBS
laser.

2. Transferred frequency noise

While the SBS emission linewidth can be several orders of
magnitude smaller than the pump laser linewidth, the noise
transferred from the pump can be significant. To capture the
effect of transferred noise, adiabatic elimination of the phonon
modes must be relaxed. Keeping first-order corrections (as
outlined in Appendix A), we find

Strans
f [ω] ≈ γ 2

S

�2
Sext

f [ω] (36)

in agreement in the low-frequency limit with Ref. [17] and
Ref. [30] when the cavity finesse is high. Sext

f [ω] is the fre-
quency noise of the external pump.

3. Thermorefractive and photothermal noise

At the scale of integrated photonics, certain noise limits
arise due to the size of the system that are not present in
larger-scale designs. At such small system volumes, thermal
fluctuations become more acute, perturbing the frequencies
of a resonator through the couplings between temperature
and optical properties. In noncrystalline systems there are
two main sources of thermally driven frequency instability
to be considered: thermorefractive and photothermal noise.
Thermorefractive noise is caused by intrinsic thermodynamic
fluctuations of the temperature within a resonator that perturb
the refractive index, while photothermal noise is produced by
refractive index changes driven by absorption of a fluctuating
optical field. Other noise sources can be significant in mi-
crophotonic systems as well; examples include thermoelastic,
Brownian, and ponderomotive noise. While these latter effects
can be important in crystalline systems, they are negligible in
comparison to thermorefractive and photothermal effects in
the systems considered here.

We derive the effects of thermal fluctuations on laser
frequency by solving the stochastic heat equation [14,16].
The foundation of this approach is derived from the ther-
modynamic relation between the zero-mean temperature
fluctuations 〈T 2〉 and the volume of the resonator, V :

〈T 2〉 = kBT 2
0

ρCV
. (37)

We model fluctuations in the thermal field using Eq. (17)
[14,31,32], describing thermorefractive and RIN-driven pho-
tothermal sources of frequency noise. To approximate the
impact of the optical power on the thermal field, we express
q̇opt in terms of the fluctuations in the absorbed power within
the resonator given by

q̇opt ≈ αabsL|E0(x)|2δPtot (t ), (38)

where αabs is the spatial decay rate of the optical modes
produced by absorption, L is the resonator length, and δPtot (t )
are the fluctuations of optical power within the resonator [29].
In the latter, we neglect the effect of group delay, valid when
the round-trip time is short compared to the characteristic

time changes in the power. Additionally, this particular form
for the absorbed power assumes that the spatial distribution
of the optical intensity over the waveguide cross section (but
not the overall power) does not change for translations
along the waveguide and neglects the impact of changes in
temperature brought about through electrostrictively driven
mechanical dissipation or thermal expansion.

Following Ref. [14] and generalizing to nonhomogeneous
systems, i.e., appropriate for waveguides comprised of multi-
ple materials, ζ has the correlation properties given by

〈ζ (t, x)ζ (t ′, x′)〉 = −2kBT 2
0 ∇ · κ∇δ3(x − x′)δ(t − t ′), (39)

where T0 is the equilibrium temperature, and ∇ · κ∇ acts on
x in the δ function. While these correlation properties are
not derived from first principles, they are consistent with the
fluctuation-dissipation theorem [14,33], ensuring consistency
with thermodynamics, and correctly reproducing Eq. (37). By
normalizing to steady-state power, the correlation properties
of the total intracavity power δPtot are described by Eqs. (29),
(30), and (33), including power fluctuations of both pump and
Stokes modes (see Appendix E).

Using an eigenfunction expansion, we solve Eq. (17), ex-
pressing the temperature fluctuations in terms of heat “modes”
that depend on the geometry and materials of the SBS res-
onator. The solution for the temperature field can be broken
into two components T = TTR + TPT, one quantifying fun-
damental thermal fluctuations [TTR, i.e., see Eq. (37)] and
a second describing temperature changes brought about by
absorbed power (TPT). Formally, TTR and TPT can be expressed
as

TTR(t, x)
TPT(t, x)

}
=

∫ t

−∞
dτ

∫
d3x′ ∑

μ

e−λμ(t−τ )ϕ∗
μ(x′)ϕμ(x)

×
{
ζ (τ, x′)
αabsL|E0(x′)|2δPtot (τ ),

(40)

where the eigenfunctions ϕμ(x) satisfy the self-adjoint eigen-
value equation

∇ · κ∇ϕμ(x) = −ρCλμϕμ(x), (41)

determining the real eigenvalues λμ when boundary condi-
tions are applied, and satisfying orthonormality conditions
given by ∫

d3x ρCϕμ(x)ϕ∗
μ′ (x) = δμμ′ . (42)

Here, the symbol μ is a collective index labeling the eigen-
function.

Using Eq. (16) and assuming the fundamental temperature
fluctuations are uncorrelated with the intracavity power fluctu-
ations, the PSD of the frequency noise due to thermorefractive
and photothermal noise can be expressed as the sum of STR

f [ω]
and SPT

f [ω] defined by

STR
f [ω]

SPT
f [ω]

}
= f 2

0

n2
g

∫
d3x

∫
d3x′ dn(x)

dT

dn(x′)
dT

× |E0(x)|2|E0(x′)|2
{

STR
T [ω; x, x′]

SPT
T [ω; x, x′],

(43)
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where f0 is the laser frequency and the two-point temperature
fluctuation power spectra are given by

STR
T [ω; x, x′]

SPT
T [ω; x, x′]

}
=

∫ ∞

−∞
dτeiωτ

{〈TTR(t + τ, x)TTR(t, x′)〉
〈TPT(t + τ, x)TPT(t, x′)〉.

(44)
Using Eqs. (39), (41), and (42) and the definition for the

intracavity RIN, we find single-sided thermorefractive fre-
quency noise given by

STR
f [ω] = 4kBT 2

0 f 2
0

∑
μ

λμ

ω2 + λ2
μ

|Eμ|2 (45)

and photothermal frequency noise given by

SPT
f [ω] = 2(αabsLPcav f0)2

∣∣∣∣∣
∑

μ

EμF∗
μ

−iω + λμ

∣∣∣∣∣
2

SRIN
tot [ω]. (46)

Here, Eμ and Fμ given by

Eμ =
∫

d3x
1

ng

dn(x)

dT
|E0(x)|2ϕμ(x) (47)

Fμ =
∫

d3x |E0(x)|2ϕμ(x) (48)

are overlap integrals between the heat modes and the optical
mode profile |E0(x)|2 and Pcav is the total average intracavity
power (including cavity buildup).

Under the assumptions described above, the results to this
point apply to arbitrary device materials and geometries. In
the next section, we use these results to predict the RIN and
frequency noise of a Si3N4 ring resonator SBS laser [5] and
compare these predictions with measured noise spectra.

IV. THEORY-EXPERIMENT COMPARISON FOR AN
INTEGRATED PHOTONIC Si3N4 BRILLOUIN LASER

To validate the modeling described in Sec. III, we compare
the predicted noise spectra to measurements of frequency
and intensity noise of a Brillouin laser created in a high-Q
Si3N4 waveguide resonator [5]. For these predictions we use
the model parameters listed in Table I and measured noise
spectra for the pump laser. Where possible we use parameters
determined by independent measurements. However, some
materials and/or measured resonator properties have been se-
lected to improve the theory-experiment agreement based on
a known range of values and/or measurement uncertainty.

Relative intensity noise measurements (open black circles)
and predictions (blue/light gray line) are shown in Fig. 2.
These results show that the SBS intensity stability is well
described by transferred RIN (magenta dotted line) at low
frequencies (<1 kHz) and by fundamental amplitude fluctu-
ations for Fourier frequencies above 1 kHz (gray dashed line).
A characteristic relaxation oscillation peak can be seen just
above 2 MHz.

In Fig. 3 predictions for fundamental and transferred fre-
quency noise [using Eqs. (35) and (36)] are directly compared
with experimental data. These data show that these noise
sources are small compared to thermorefractive and pho-
tothermal noise over the range of frequencies shown.

In contrast with fundamental and transferred noise, thermal
instability depends on the resonator geometry. To model these

FIG. 2. Relative intensity noise (RIN) of a first-order (Stokes
mode), ring resonator SBS laser. The black circles are experimental
data, the gray dashed line is the fundamental RIN, the magenta dotted
line is the RIN transferred from the pump, and the blue (light gray)
line is the composite of the models. The analytical model includes
effects due to the fundamental SBS physics and the pump laser.

thermal effects in a Si3N4 ring resonator, we approximate
the resonator geometry as a uniform cylinder with the same
spatial volume of the actual (rectangular) chip. The wave-
guide forming the resonator forms a closed ring centered on
the cylinder, with the radius of the SBS laser resonator, and the
resonator is assumed to be comprised entirely of silica (i.e.,
we neglect the changes in materials properties for the Si3N4

waveguide and the silicon handle). For a cylindrical body, the
relevant normalized eigenfunctions of the heat equation that
quantify the temperature fluctuations that vanish at the bound-

FIG. 3. Frequency noise of a first-order (Stokes mode), ring res-
onator SBS laser. The experimental data are represented by the black
circles. The noise sources considered in the model are photothermal
[blue (light gray) line], transferred phase noise (lower purple line),
fundamental noise (gray dotted line), and thermorefractive (green
dashed line). The red (darker gray line) plot is the complete, analyti-
cal model of the frequency noise. Assuming that the individual noise
sources are uncorrelated, then those sources add to obtain this result.
The sharp spikes in the data are artifacts from the data collection
process. Any discrepancies of these spikes between the total and
individual noise sources are due to interpolation effects.
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aries of the resonator are given by

ϕmn(r, z) = J0
( x0,mr

R

)
sin

(
πnz
H

)
√

π
2 HR2ρCJ1(x0,m)2

, (49)

where H is the height of the resonator, R is the radius of the
cylinder, J0(x) is the zero-order Bessel function of the first
kind, x0,m is the mth zero of J0(x), and n is an integer. The
relevant eigenvalues are λmn = κ[x2

0,m/R2 + π2n2/H2]/(ρC).
Finite element simulations show that the electromagnetic
mode profile is well approximated by the volume-normalized
expression:

|E0(r, z)|2 ≈ 1

4π3/2σrσzRc
e−(r−Rc )2/σ 2

r −|z−Hc|/σz , (50)

where σr and σz are the mode widths in the radial and vertical
directions, Rc is the radial distance from the chip center to
the core, and Hc is the vertical distance of the core from the
bottom of the resonator (see Appendix F). We obtain the mode
widths σr and σz by fitting Eq. (50) to a simulated electro-
magnetic mode profile using a finite element solver (COMSOL

Multiphysics). Combining the optical mode profile in Eq. (50)
and the heat modes given by Eq. (49) with the equations for
the thermal and driven noise, Eqs. (45) and (46), allows for the
calculation of the thermorefractive and photothermal noises,
respectively shown in Fig. 3 as a green dashed line and a blue
(light gray) line.

Figure 3 shows that the Brillouin laser frequency noise
power spectrum is well described by a combination of pho-
tothermal, thermorefractive, and fundamental noise (gray
dotted line). These results give insights about how the fre-
quency stability of this laser can be improved. For frequencies
below 10 kHz, photothermal noise [blue (light gray) line]
dominates and can be reduced by improving the RIN of
the pump laser, lowering the intracavity power, or minimiz-
ing the optical absorption among other possibilities. Above
10 kHz, the frequency stability is determined by thermore-
fractive noise (green dashed line), which can be improved by
increasing the mode volume and utilizing materials with small
thermo-optic coefficients.

V. DISCUSSION

In this paper we have presented a unified coupled-mode
description of the dominant forms of noise for a wide array
Brillouin lasers, capturing the noise transferred from the pump
laser and thermally driven forms of frequency instability. In
particular, we developed a model for photothermal noise in
Brillouin lasers, accounting for thermal dynamics described
by the heat equation. We validate our model by compar-
ing predicted noise spectra with measurements of frequency
and intensity noise for an integrated photonic Brillouin laser.
Using empirically derived parameters and realistic material
properties as inputs, our model reproduces the key features
of the measured noise spectra (see Figs. 2 and 3) and enables
the noise over a wide spectrum of frequencies to be identified
and understood.

By identifying important noise sources, our model provides
insights that can pave the way to improved performance. For
example, our results show that the close-to-carrier (ctc) fre-

quency instability for an integrated photonic Si3N4 resonator
is dominated by photothermal noise. This noise can be re-
duced in two ways:

(1) Reducing the pump laser RIN, which dominates the
generation of photothermal noise at low frequencies, may
drastically reduce the ctc frequency noise.

(2) Counterintuitively, the frequency noise can be reduced
by stabilizing the laser by probing a second identical SBS
laser resonator as reference cavity at low power.

Indeed, a recent paper showed that the latter ap-
proach achieves an order-of-magnitude reduction in the laser
linewidth and two-order-of-magnitude reduction in the ctc
noise [34]. As applications of ultrastable lasers transition to
the chip scale, this model will provide a powerful tool to
test new design concepts, diagnose noise sources, and identify
paths to improved performance.

ACKNOWLEDGMENTS

This material is supported by the Defense Advanced
Research Projects Agency (FA9453-19-C-0030) and the Ad-
vanced Research Projects Agency-Energy (DE-AR0001042).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting official policies of DARPA, ARPA-E, or the U.S.
Government or any agency thereof.

APPENDIX A: CORRECTIONS TO THE QUASISTATIC
PHONON APPROXIMATION: PUMP LINEWIDTH

COMPRESSION

To capture the effect of the pump noise transferred to the
SBS laser, corrections to the quasistatic approximation for the
phonon mode dynamics much be retained. These corrections
can be derived from the exact solution to Eq. (5) given by

b(t ) = −ig∗
∫ ∞

0
dt1e−�t1/2ap(t − t1)a†

S (t − t1) + b̂. (A1)

Substituting this expression for b(t ) into Eqs. (3) and (4), we
obtain the effective equations of motion for the Stokes mode
given by

ȧS = (−iω̂S − γS/2)aS + ĥS

− |g|2
∫ ∞

0
dt1e−�t1/2aS (t − t1)ap(t )a†

p(t − t1). (A2)

Assuming that the pump and Stokes modes change very
slowly in comparison to the phonon decay rate, we can ap-
proximate the impact of the phonons on the Stokes mode by
using a Markov approximation, implying∫ ∞

0
dt1e−�t1/2aS (t − t1)ap(t )a†

p(t − t1)

≈ 2

�
aS (t )ap(t )a†

p(t ) − 4

�2
(ȧS (t )ap(t )a†

p(t )

+ aS (t )ap(t )ȧ†
p(t )). (A3)

To obtain the corrections to the frequency noise as the qua-
sistatic approximation is relaxed, we decompose Eq. (A2)
in terms of phase and amplitude using Eqs. (18) and (19),
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linearize for small perturbations of amplitude and phase about
steady state, and take the imaginary part. We find

ϕ̇S ≈ − ω̂S + Im[h̃S] − γS

�
(−ω̂p + ξext ), (A4)

where Eq. (20), μ = 2|g|2/�, and the results of Appendix B
have been used to replace 4|g|2α2

p/�
2 with γS/�, ϕ̇p with

−ω̂p + ξext, and γS/�  1 has been used. Neglecting all
noise terms except for the phase diffusion of the pump
laser (see Appendix B), we find the frequency noise pro-
duced by instability in the pump laser phase given by
Eq. (36) in agreement with Debut et al. [17] in the limit
where γS/�  1.

APPENDIX B: CONTROL THEORY AND PUMP LOCKING

In practice the pump laser is locked to the resonator, mod-
ifying the laser dynamics and impacting the noise. To capture
this effect, we use control theory to model the impact of this
laser lock and derive equations of motion for the pump laser
phase. These results show that, with realistic parameters, the
carrier frequency of the pump laser tracks the resonances of
the laser cavity and the pump noise is transferred to the pump
light circulating in the cavity when the resonance width is
much greater than the pump laser linewidth.

We model the pump laser phase ϕext according to the equa-
tion of motion given by

ϕ̇ext = −ωc + ξext, (B1)

where ωc denotes the carrier frequency, which can slowly
drift and be externally controlled, and ξext is a δ-correlated
Langevin force describing the pump laser’s fundamental
linewidth. We assume that the pump laser carrier frequency
is locked to the SBS resonator using a Pound-Drever-Hall
(PDH) feedback loop [35–37]. Using this form of feed-
back, the probe laser is phase modulated and the beat note
of the transmitted carrier and sidebands is detected. This
measurement yields an error signal that quantifies the dif-
ference between the carrier frequency of the pump laser and
the resonances of the optical cavity. Assuming proportional-
integral-derivative (PID) feedback, a control theory model
yields the equation of motion for the pump laser carrier fre-
quency ϕ̇c given by

ϕ̇c(t ) = −gP(ϕ̇c(t − �t ) − ˙̂ϕp(t − �t ))

− gI

∫ t−�t

0
dτ (ϕ̇c(τ ) − ˙̂ϕp(τ ))

− gD(ϕ̈c(t − �t ) − ¨̂ϕp(t − �t )), (B2)

where gP, gI , and gD are the respective proportional, integral,
and derivative gains of a PID controller used to stabilize the
pump laser frequency [38], �t is the inverse loop bandwidth
or loop delay, and ϕ̂p (here ˙̂ϕp ≡ −ω̂p) represents the phase
fluctuations of the resonator produced by thermorefractive
and photothermal effects. Through the dynamics given by
Eq. (B2), the feedback minimizes the error signal given by
ϕ̇c − ˙̂ϕp, seeking to bring the pump laser in resonance with the
time-dependent cavity frequency ω̂p. The degree to which the
pump laser is brought into resonance with the cavity is deter-
mined by loop gain and bandwidth. We assume the PDH lock

operates with a modulation frequency much greater than the
resonator linewidth where the gain (or frequency discrimina-
tor) is proportional to

√
PcPsb�νext/�ν2, where Pc (Psb) is the

carrier (sideband) power sent into the cavity and �ν (�νext)
is the loaded (external) resonator linewidth [37]. This formula
generalizes the frequency discriminator for resonators with in-
ternal losses. Only for frequency fluctuations that vary slower
than the loop bandwidth 1/�t will the feedback modeled
by Eq. (B2) effectively bring the pump laser frequency into
resonance with the cavity.

In the Fourier transform, we obtain a solution for ϕc in the
frequency domain given by

ϕc[ω] = D(ω)ϕ̂p[ω]

−iω + D(ω)
, (B3)

where D(ω) ≡ (−iωgP + gI − ω2gD)eiω�t accounts for the
locking dynamics. Next, we use this expression for ϕc[ω] to
obtain phase dynamics of the mode driven by the pump laser.

Examining Eq. (22), we make the substitution Im[F̃ext] =
|Fext|sin(ϕext − ϕp) giving

ϕ̇p = −ω̂p + 1

αp
Im[h̃p] +

√
γext

αp
|Fext| sin(ϕext − ϕp). (B4)

For sufficient gain in the feedback loop, i.e., |D(ω)| � ω

(true within loop bandwidth for parameters in Table I),
Eq. (B3) predicts that ϕc ≈ ϕ̂p, assuming a narrow pump
laser linewidth enables a small angle approximation of
sin(ϕext − ϕp), so that Eq. (B4) can be solved to linear order.
Under these conditions, we find

ϕp[ω] � 1

iω

[
1 + iω�R

(−iω + �R)(−iω + D(ω))

]
ω̂p[ω]

+ 1

−iω + �R

1

αp
Im[h̃p[ω]]

− �R

iω(−iω + �R)
ξext[ω], (B5)

where �R ≡ √
γext|Fext|/αp. For the parameters listed in Ta-

ble I, respective PID gains of 0, 3.4 MHz, 0, and loop delay
�t ∼ 2μs, Eq. (B5) shows that the phase of the pump mode
is dominated by thermorefractive and photothermal instability
and the linewidth of the pump laser, permitting the approxima-
tion ϕ̇p ≈ −ω̂p + ξext.

APPENDIX C: LOW-FREQUENCY LIMIT OF THE RIN

To examine the low-frequency limit, it is convenient to
manipulate the transferred RIN, Eq. (30), to be

SRIN
trans[ω] = 1

|−(ω/�RIN)2 − i
(
ω�R/�2

RIN

) + 1|2[
γS/(2μ) + α2

S

]2

4α4
S

SRIN
ext [ω]. (C1)

At the clamping point of the Stokes mode, or right as the
second Stokes mode starts to lase, α2

S = γS/(2μ). At the low-
frequency limit, ω → 0, the transferred RIN will be identical
to the pump’s RIN at the clamping point. If the second Stokes
mode can be prevented from lasing, potentially by tuning the
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resonator to be off resonance with this mode, then an increase
in the pump power will continue to decrease the Stokes RIN
past the pump’s RIN, further stabilizing the resonator.

APPENDIX D: CONSISTENCY OF EQS. (13) AND (14)
WITH THERMAL EQUILIBRIUM

Here, we show that the addition of a fluctuating frequency
to the resonator mode does not impact thermal equilibrium for
the optical modes when (1) the Langevin force is produced by
white noise and (2) the Langevin force and frequency noise
are uncorrelated. Ordinarily, the addition of noise to a dynam-
ical system is necessarily accompanied by additional sources
of dissipation in order for finite-valued averaged quantities
to exist (e.g., energy in thermal equilibrium). However, we
show that when the resonator linewidth is determined by
white noise, the addition of a fluctuating frequency is consis-
tent with thermodynamics without requiring additional decay
channels. In other words, zero-mean fluctuations of the res-
onance frequency drift do not appear to impact the average
time-coincident thermodynamic properties.

To show this, consider the dynamics of an optical mode that
include the effects of fluctuating resonant frequency. In this
case, the mode amplitude satisfies the Heisenberg-Langevin
equation (in the rotating frame at the mean resonance fre-
quency) given by

ȧ = −(iω̂(t ) + γ /2)a + η. (D1)

Here, the dissipation rate and the Langevin force η are se-
lected so that thermal equilibrium is achieved at long times; in
other words, the mean mode occupation number 〈a†(t )a(t )〉 =
Nth is given by the Bose-Einstein distribution.

Equation (D1) can be solved formally to give

a(t ) =
∫ t

−∞
dτ e− γ

2 (t−τ )−i
∫ t
τ

dτ1ω̂(τ1 )η(τ ). (D2)

Taking the expectation value of the photon number, assuming
that η and ω̂ are uncorrelated, and that ω̂ commutes at different
times, we find

〈a†(t )a(t )〉 =
∫ t

−∞
dτ

∫ t

−∞
dτ ′ e− γ

2 (2t−τ−τ ′ )

× 〈
e−i

∫ τ

τ ′ dτ1 ω̂(τ1 )
〉〈η†(τ )η(τ ′)〉. (D3)

For white noise, i.e., 〈η†(τ )η(τ ′)〉 = γ Nthδ(τ − τ ′), we find
〈e−i

∫ τ

τ ′ dτ1 ω̂(τ1 )〉 → 1, yielding 〈a†(t )a(t )〉 = Nth, showing that
the frequency fluctuations do not impact thermal equilibrium.

While the mean thermal occupation number is not im-
pacted by time-dependent frequency fluctuations, the corre-
lation properties are. For the two-time correlation function we
find

〈a†(t + τ )a(t )〉 = Nthe− γ

2 |τ |〈e−i
∫ t+τ

t dτ1 ω̂(τ1 )
〉
, (D4)

where, in the special case of Gaussian frequency noise,
〈a†(t + τ )a(t )〉 becomes

〈a†(t + τ )a(t )〉 = Nthe− γ

2 |τ |e−4π
∫ ∞
−∞ dω sin2 (ωτ )

ω2 S f [ω]
, (D5)

where S f [ω] is the power spectrum of ω̂/(2π ). This result
shows that frequency noise can alter the temporal correlations.

FIG. 4. Simulated and approximated radial electromagnetic
mode profiles.

Amplitude correlations with thermorefractive noise

Under thermal equilibrium and when the optical decay rate
is much bigger than the eigenfrequency of the fundamental
heat mode, Eq. (D5) takes on a simple analytical form ex-
hibiting Gaussian decay. Using Eq. (45) for S f , we find∫ ∞

−∞
dω

sin2(ωτ )

ω2
S f [ω]

= 4kBT 2
0 f 2

0

∑
μ

|Eμ|2
∫ ∞

0
dω

sin2(ωτ )

ω2

λμ

ω2 + λ2
μ

= 4kBT 2
0 f 2

0

∑
μ

|Eμ|2 π

4λ2
μ

[−1 + 2λμτ + e−2λμτ ]. (D6)

Here, γ � λ0 (i.e., the fundamental heat mode frequency)
enables an expansion in small τ leading to the two-time cor-
relation function given by

〈a†(t + τ )a(t )〉 ≈ Nthe− γ

2 |τ |e−2〈δω2〉τ 2
, (D7)

where the variance in the frequency fluctuations is given by

〈δω2〉 = 4kBT 2
0 (2π f0)2

∑
μ

|Eμ|2, (D8)

which can be obtained by integrating Eq. (45) over all positive
ω and multiplying by 2π .

FIG. 5. Simulated and approximated vertical electromagnetic
mode profiles.
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APPENDIX E: TOTAL RIN EQ. (33)

In this Appendix, we give an explicit expression for SRIN
tot [ω] needed to compute the photothermal noise. The total RIN

accounts for all of the power fluctuations occurring in the resonator, including the cross correlations between the pump and
Stokes mode that are critical to model photothermal noise. Using Eqs. (31) and (32), Eq. (33) is given by:

SRIN
tot = 4(

α2
p + α2

S

)2

∫ ∞

−∞
dτeiωτ

[
α2

p〈δαp(t + τ )δαp(t )〉 + α2
S〈δαS (t + τ )δαS (t )〉

+αpαS〈δαp(t + τ )δαS (t )〉 + αSαp〈δαS (t + τ )δαp(t )〉]. (E1)

where the solution for Eqs. (24) and (25) enable the evaluation of the two-time correlation function, giving

SRIN
tot [ω] = 4|χ (ω)|2(

α2
p + α2

S

)2

{
α2

p

[
ω2

(
1

2
γS

(
Nth + 1

2

)
+ α2

SL0

)
+ �2

RIN

(
1

2
γS

(
Nth + 1

2

)
+ α2

pL0

)
+ ω2 γextPext

4h̄ωext
SRIN

ext [ω]

]

+ α2
S

[
�2

RIN

(
1

2
γS

(
Nth + 1

2

)
+ α2

SL0

)
+ (
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where |χ (ω)|2 = [(ω2 − �2
RIN)2 + (ω�R)2]−1 and L0 = 1

2 g2(nth + 1/2) �
ω2+�2/4 . The correlation functions used to obtain Eq.

(E2) can be found in Ref. [18].

APPENDIX F: JUSTIFICATION FOR MODE PROFILE APPROXIMATION GIVEN BY EQ. (50)

In this section we justify the approximation of the mode profile given by Eq. (50). Using a finite element solver (COMSOL

Multiphysics), we obtain a numerical solution for the electromagnetic field accounting for the waveguide geometry and optical
properties. Radial and vertical cross sections of the simulated mode intensity are shown respectively in Figs. 4 and 5. We fit
Eq. (50) to these simulated data to obtain σr and σz, plotted as green lines in Figs. 4 and 5.

By reproducing the qualitative features of the electromagnetic mode profile and also having a simple analytical form, Eq. (50)
enables simple approximations to the overlap integrals given by Eqs. (47) and (48).

[1] W. Loh, J. Stuart, D. Reens, C. D. Bruzewicz, D. Braje, J.
Chiaverini, P. W. Juodawlkis, J. M. Sage, and R. McConnell,
Operation of an optical atomic clock with a Brillouin laser
subsystem, Nature (London) 588, 244 (2020).

[2] N. Chauhan, A. Isichenko, K. Liu, J. Wang, Q. Zhao, R. O.
Behunin, P. T. Rakich, A. M. Jayich, C. Fertig, C. Hoyt et al.,
Visible light photonic integrated Brillouin laser, Nat. Commun.
12, 4685 (2021).

[3] F. Zarinetchi, S. Smith, and S. Ezekiel, Stimulated Brillouin
fiber-optic laser gyroscope, Opt. Lett. 16, 229 (1991).

[4] J. Li, M.-G. Suh, and K. Vahala, Microresonator Brillouin gy-
roscope, Optica 4, 346 (2017).

[5] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D.
Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan et al.,
Sub-hertz fundamental linewidth photonic integrated Brillouin
laser, Nat. Photonics 13, 60 (2019).

[6] J. Li, H. Lee, and K. J. Vahala, Microwave synthesizer using an
on-chip Brillouin oscillator, Nat. Commun. 4, 1 (2013).

[7] G. M. Brodnik, M. W. Harrington, J. H. Dallyn, D. Bose, W.
Zhang, L. Stern, P. A. Morton, R. O. Behunin, S. B. Papp,
and D. J. Blumenthal, Optically synchronized fibre links using
spectrally pure chip-scale lasers, Nat. Photonics 15, 588 (2021).

[8] S. Smith, F. Zarinetchi, and S. Ezekiel, Narrow-linewidth stim-
ulated Brillouin fiber laser and applications, Opt. Lett. 16, 393
(1991).

[9] J. Li, H. Lee, T. Chen, and K. J. Vahala, Characterization of
a high coherence, Brillouin microcavity laser on silicon, Opt.
Express 20, 20170 (2012).

[10] J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang,
Highly stable low-noise Brillouin fiber laser with ultranarrow
spectral linewidth, IEEE Photonics Technol. Lett. 18, 1813
(2006).

[11] I. S. Grudinin, A. B. Matsko, and L. Maleki, Brillouin Lasing
with a CaF2 Whispering Gallery Mode Resonator, Phys. Rev.
Lett. 102, 043902 (2009).

[12] J. Li, H. Lee, and K. J. Vahala, Low-noise Brillouin
laser on a chip at 1064 nm, Opt. Lett. 39, 287
(2014).

[13] M.-G. Suh, Q.-F. Yang, and K. J. Vahala, Phonon-Limited-
Linewidth of Brillouin Lasers at Cryogenic Temperatures, Phys.
Rev. Lett. 119, 143901 (2017).

[14] M. L. Gorodetsky and I. S. Grudinin, Fundamental thermal
fluctuations in microspheres, J. Opt. Soc. Am. B 21, 697
(2004).

[15] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and
L. Maleki, Whispering-gallery-mode resonators as frequency
references. II. Stabilization, J. Opt. Soc. Am. B 24, 2988 (2007).

[16] A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki,
Whispering-gallery-mode resonators as frequency references. I.
Fundamental limitations, J. Opt. Soc. Am. B 24, 1324 (2007).

043506-11

https://doi.org/10.1038/s41586-020-2981-6
https://doi.org/10.1038/s41467-021-24926-8
https://doi.org/10.1364/OL.16.000229
https://doi.org/10.1364/OPTICA.4.000346
https://doi.org/10.1038/s41566-018-0313-2
https://doi.org/10.1038/s41566-021-00831-w
https://doi.org/10.1364/OL.16.000393
https://doi.org/10.1364/OE.20.020170
https://doi.org/10.1109/LPT.2006.881145
https://doi.org/10.1103/PhysRevLett.102.043902
https://doi.org/10.1364/OL.39.000287
https://doi.org/10.1103/PhysRevLett.119.143901
https://doi.org/10.1364/JOSAB.21.000697
https://doi.org/10.1364/JOSAB.24.002988
https://doi.org/10.1364/JOSAB.24.001324


JOHN H. DALLYN et al. PHYSICAL REVIEW A 105, 043506 (2022)

[17] A. Debut, S. Randoux, and J. Zemmouri, Linewidth narrow-
ing in Brillouin lasers: Theoretical analysis, Phys. Rev. A 62,
023803 (2000).

[18] R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu,
and D. J. Blumenthal, Fundamental noise dynamics in
cascaded-order Brillouin lasers, Phys. Rev. A 98, 023832
(2018).

[19] W. Loh, S. B. Papp, and S. A. Diddams, Noise and dynamics
of stimulated-Brillouin-scattering microresonator lasers, Phys.
Rev. A 91, 053843 (2015).

[20] A. Matsko, A. Savchenkov, and L. Maleki, Stability of res-
onant opto-mechanical oscillators, Opt. Express 20, 16234
(2012).

[21] A. W. Elshaari, I. E. Zadeh, K. D. Jöns, and V. Zwiller, Thermo-
optic characterization of silicon nitride resonators for cryogenic
photonic circuits, IEEE Photonics J. 8, 1 (2016).

[22] C. Panuski, D. Englund, and R. Hamerly, Fundamental Ther-
mal Noise Limits for Optical Microcavities, Phys. Rev. X 10,
041046 (2020).

[23] W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J.
Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams,
Dual-microcavity narrow-linewidth Brillouin laser, Optica 2,
225 (2015).

[24] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J.
Vahala, Chemically etched ultrahigh-Q wedge-resonator on a
silicon chip, Nat. Photonics 6, 369 (2012).

[25] I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-
Davies, S. J. Madden, and B. J. Eggleton, Narrow linewidth
Brillouin laser based on chalcogenide photonic chip, Opt. Lett.
38, 3208 (2013).

[26] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and
G. Bahl, Brillouin integrated photonics, Nat. Photonics 13, 664
(2019).

[27] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen,
H. Wang, and K. Vahala, Bridging ultrahigh-Q devices and
photonic circuits, Nat. Photonics 12, 297 (2018).

[28] K. Hu, I. V. Kabakova, T. F. Büttner, S. Lefrancois, D. D.
Hudson, S. He, and B. J. Eggleton, Low-threshold Brillouin
laser at 2 μm based on suspended-core chalcogenide fiber, Opt.
Lett. 39, 4651 (2014).

[29] R. W. Boyd, Nonlinear Optics (Academic Press, New York,
2020).

[30] L. Stepien, S. Randoux, and J. Zemmouri, Intensity noise in
Brillouin fiber ring lasers, J. Opt. Soc. Am. B 19, 1055 (2002).

[31] V. Braginsky, M. Gorodetsky, and S. Vyatchanin, Ther-
modynamical fluctuations and photo-thermal shot noise in
gravitational wave antennae, Phys. Lett. A 264, 1 (1999).

[32] V. Braginsky, M. Gorodetsky, and S. Vyatchanin, Thermo-
refractive noise in gravitational wave antennae, Phys. Lett. A
271, 303 (2000).

[33] H. B. Callen and T. A. Welton, Irreversibility and generalized
noise, Phys. Rev. 83, 34 (1951).

[34] K. Liu, J. H. Dallyn, G. M. Brodnik, A. Isichenko, M. W.
Harrington, N. Chauhan, D. Bose, P. A. Morton, S. B.
Papp, R. O. Behunin et al., Photonic circuits for laser
stabilization with ultra-low-loss and nonlinear resonators,
arXiv:2107.03595.

[35] R. V. Pound, Electronic frequency stabilization of microwave
oscillators, Rev. Sci. Instrum. 17, 490 (1946).

[36] R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A.
Munley, and H. Ward, Laser phase and frequency stabilization
using an optical resonator, Appl. Phys. B 31, 97 (1983).

[37] E. D. Black, An introduction to Pound-Drever-Hall laser fre-
quency stabilization, Am. J. Phys. 69, 79 (2001).

[38] P. Zhuravlev, Development of a stable laser lock system,
Master’s thesis, University of William and Mary, 2012.

043506-12

https://doi.org/10.1103/PhysRevA.62.023803
https://doi.org/10.1103/PhysRevA.98.023832
https://doi.org/10.1103/PhysRevA.91.053843
https://doi.org/10.1364/OE.20.016234
https://doi.org/10.1109/JPHOT.2016.2561622
https://doi.org/10.1103/PhysRevX.10.041046
https://doi.org/10.1364/OPTICA.2.000225
https://doi.org/10.1038/nphoton.2012.109
https://doi.org/10.1364/OL.38.003208
https://doi.org/10.1038/s41566-019-0498-z
https://doi.org/10.1038/s41566-018-0132-5
https://doi.org/10.1364/OL.39.004651
https://doi.org/10.1364/JOSAB.19.001055
https://doi.org/10.1016/S0375-9601(99)00785-9
https://doi.org/10.1016/S0375-9601(00)00389-3
https://doi.org/10.1103/PhysRev.83.34
http://arxiv.org/abs/arXiv:2107.03595
https://doi.org/10.1063/1.1770414
https://doi.org/10.1007/BF00702605
https://doi.org/10.1119/1.1286663

