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ABSTRACT  

Visible light laser and optical systems are the heart of precision applications including quantum computing, atomic 
clocks and precision metrology. As these systems scale in terms of number of lasers, wavelengths, and optical 
components, their reliability, weight, size, and power consumption will push the limits of using traditional laboratory-
scale lasers and optics. Visible light photonic integration is critical to overcoming these bottlenecks and to enable 
portable and low cost applications. Solutions must deliver low waveguide losses, low laser phase noise and high stability 
lasers, and key functions such as modulation and wavelength shifting, in a wafer-scale CMOS foundry compatible 
platform. In this talk we will cover integration of visible light photonics and key components for atom cooling, trapping 
and interrogation, in the ultra-low loss silicon nitride (Si3N4) waveguide platform, including ultra-narrow linewidth 
stabilized lasers, ultra-low loss waveguides, ultra-high Q resonators, modulators, filters, beam emitters and other 
components. Higher level functional integration will be covered as well as atom cooling demonstrations.  
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1. INTRODUCTION  
Photonic integration can improve the reliability, reduce the cost and size, and enable scalability, of traditionally table-top 
sized precision lasers and optics for visible light applications such as optical atomic clocks [1-3], precision spectroscopy 
[4, 5] and metrology [6, 7], atomic sensors [8-10], and quantum information sciences and applications [11-14]. For 
example, atomic, molecular and optic (AMO) applications [15] rely on racks of lasers and table-sized optics to perform 
spectroscopy, trap and cool, manipulate, and probe just a single atom, ion, molecule or quantum gate. Today’s optics 
infrastructure presents challenges to scaling the number of atoms, ions or qubits, in order to improve the sensitivity of a 
quantum sensor or computational complexity of a quantum computer. For visible light AMO systems, waveguide loss is 
paramount to the preservation of photons [16] and resonator Q plays a critical role in laser linewidth narrowing, phase 
noise reduction and filtering [17]. Photonic integration can address these requirements [18] and key functions including 
photon routing, optical filtering [19], free-space beam formation [20, 21], and hybrid tunable [22] and ultra-low 
linewidth lasers [23, 24]. The silicon nitride integration platform [25, 26] offers a wafer-scale, CMOS compatible, 
photonic integration platform that delivers ultra-low waveguide and ultra-high Q resonators, and can implement other 
key functions such as modulation, across the 400 - 900 nm wavelength range, and can realize these advances.  An 
example of an integrated visible light atom cooling, trapping, and interrogation system on-chip is shown in Figure 1.  

 
Figure 1. Illustrative example application of visible light photonics for integrated atom cooling, trapping, and interrogation 

(adapted from [16]). 
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2. INTEGRATED STABILIZED LASERS 
Photonic integrated laser stabilization has been achieved by locking a semiconductor laser to a Si3N4 4.0 m long 
photonic integrated coil resonator (Fig. 2). Using a Pound-Drever Hall (PDH) lock, an integral linewidth of 36 Hz and 
Allan deviation of 1.8x10-13 at 10 ms, and 2.3 kHz/s drift were demonstrated [27]. The 1550 nm coil resonator 
stabilization cavity measures a 49.1 MHz free spectral range (FSR), intrinsic 80 million Q, and loaded 55 million Q.  
Laser stabilization has also been reported using dual integrated bus-coupled ring resonator cavities [28].  

 
Figure 2. Examples of Si3N4 integrated stabilized lasers. (a) Coil resonator stabilized semiconductor laser. (b) 

Frequency noise, linewidth, and ADEV of (a). (c) Dual integrated cavity stabilized Brillouin laser. 

3. VISIBLE LIGHT PHOTONIC COMPONENTS 
Taking inspiration from these systems, we leverage the properties of nonlinear and ultra-low loss resonators fabricated 
using the silicon nitride (Si3N4) waveguide platform [26] components needed for AMO laser and optical systems. With 
losses as low as 0.034 dB/m and transparency from 405 nm through the infrared (IR) [16, 17], the Si3N4 waveguide 
platform is a versatile solution for integrating stable lasers. Additionally, the Si3N4 waveguide platform is wafer-scale 
and CMOS foundry compatible, enabling integration of a wide variety of photonic elements at the chip-scale. We have 
implemented ultra-low fundamental linewidth SBS lasers, PDH locked to ultra-high Q and large mode volume 
resonators, and sensitive dual-mode resonator designs for frequency drift correction. These results include: (i) Low phase 
noise lasers (ii) stabilization cavities, and (iii) frequency stabilized lasers. Examples include Visible and IR SBS 
integrated lasers [23, 24] and integrated reference cavities and modulators: Fig. 3 (a) 4-meter integrated coil-resonator 
for 36 Hz integral linewidth 1550 nm laser [29] and an integrated 3-meter 40 million Q coil-resonator yielding a 4.2 kHz 
linewidth at 674 nm [30], (b) 0.034 dB/m loss waveguides in a 200 mm wafer-scale Si3N4 integration platform realizing 
a 720 million Q resonator and 380 µW threshold SBS laser at 1550nm [17] (c) ultra-low loss PZT actuated ring 
modulator for photonic control [31], (d) 422 million Q resonator [32], and (e) a nonlinear cavity locked to an ultra-low 
loss cavity to reduce the Si3N4 Brillouin laser linewidth to 330 Hz integral linewidth and 6.5×10-13 FFN at 8 ms [28].  

4. ATOM COOLING AND TRAPPING 
Cold atoms are central to precision atomic applications including timekeeping and sensing. The 3D magneto-optical trap 
(3D-MOT), is commonly used to produce a cloud of cold atoms. These traps require the delivery of multiple, large area, 
collimated laser beams to an atomic vacuum cell. We have demonstrated a 87Rb 3D-MOT using a fiber-coupled photonic 
integrated circuit to deliver all necessary beams to cool and trap more than 5 x 106 atoms to near 200 μK in a trapping 
volume that is an order of magnitude smaller than that of an equivalent atom number diffraction grating MOT [33] (Fig. 
4). The silicon nitride photonic circuit transforms fiber-coupled 780 nm cooling and repump light via waveguides to 
three orthogonal non-diverging 2.5 mm x 3.5 mm free-space cooling and repump beams directly interface to the 
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rubidium cell. This full planar, CMOS foundry-compatible integrated beam delivery is compatible with other 
components, such as lasers and modulators, promising system-on-chip solutions for cold atom applications. 

 
Figure 3 (a) Photonic integrated coil resonator, (b) 720 million Q integrated resonator, (c) low loss, low power, silicon 

nitride PZT stress-optic microresonator modulator, (d) 422 million Q planar integrated all-waveguide resonator, (e) 
self-similar ultra-high Q Si3N4 integrated resonators for Brillouin laser linewidth narrowing and stabilization. 

 

 
Figure 4.  (a) Photonic integrated 3 collimated 780 nm cooling and repump beam delivery PIC. (b) Demonstration of 

PIC beam deliver in an 87Rb 3D-MOT. 
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