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All-Optical Label Swapping with Wavelength
Conversion for WDM-IP Networks with
Subcarrier Multiplexed Addressing

D. J. Blumenthal Senior MemberA. Carena, L. Rau, V. Curri, and S. Humphries

Abstract—We report the first demonstration of all-optical label Core Optical Network
swapping with wavelength conversion and subcarrier multiplexed
addressing for WDM-IP. This demonstration utilizes a module
which is based on cascaded semiconductor optical amplifier wave- ==
length converters that perform the functions of label removal, SN“;;ZE
label rewriting, payload 2R regeneration and double sideband
subcarrier label regeneration. Replacement of double-sideband
subcarrier labels on a hop-by-hop basis addresses the problem
of dispersion induced fading in a multihop fiber network. A
direct detection subcarrier receiver is used to recover the label.
Switching over four wavelengths covering 16 nm is demonstrated <7 E® ],
with noninverting wavelength conversion of 2.5-Gb/s payloads
and burst mode recovery of 50-Mb/s labels. BER measurements
of better than 10~? for the wavelength-converted payload and

rewritten labels at all wavelengths are presented. 0t
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Index Terms—All-optical label swapping, all-optical networks, _ _ _ ‘ o _
IP over WDM, optical IP, optical packet switching, wavelength- Fig. 1. WDM-IP routing with optical label swapping in an optical core

division multiplexing. network illustrating the containerization of WDM-IP packets by the edge
routers and the forwarding and routing operations performed by the core
routers.
I. INTRODUCTION

AVELENGTH-DIVISION-MULTIPLEXED (WDM) destination nodes. At the input to the core optical network,

fiber transmission and switching are seen as potent&dge routers containerize IP packets by adding subcarrier-
solutions to the performance and scaling bottlenecks in Intermetiltiplexed (SCM) labels without modifying the IP header
Protocol (IP) networks and offer the potential for limitedor payload. The all-optical core routers perform routing and
transparency to packet data-rate and format. However, fttwarding operations within the core optical network by
packet routing and forwarding presents a potential bottlenegkvelength conversion and SCM label swapping. As packets
as individual fiber link rates approach Thps. IP label swappigave the core optical network, the edge routers remove the
is a low latency, low overhead routing technique that simplifieSCM labels and perform a final wavelength conversion.
packet forwarding and enables scaling to terabit rates [1]. IPIn this letter, we report the first experimental demonstration
label swapping can avoid route lookups, reducing the numhgfrall-optical label swapping (AOLS) architecture with optical
of packets that must pass through the IP layer. The lal®@tm addressing for WDM-IP networks [2], [3]. The AOLS
swapping technique is not restricted to IP alone and cg@thnique reported here, was realized by cascading a cross
support other protocols as well. gain modulated semiconductor optical amplifier wavelength

The basic concept of WDM-IP routing with optical labelonyerter (XGM-WC) and an interferometric wavelength con-

S\_Napping and subcarrier multiplexed addressing is shown,jByter (IWC) [4]. The AOLS module is used to collapse the
Fig. 1. IP packets are generated and received at the source gpg| swapping and forwarding functions. Key embedded func-
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Fig. 2. Experimental setup for the optical label swapping technique with the . .
two-stage cascaded wavelength converters. |?:onversuon, compute a new label, multiplex the new label onto

a RF subcarrier, and set the wavelength of a fast tunable laser.

In our experiment we used a fixed mapping from the packet

rate wavelength conversion, IP packet regeneration and laR@je| to the output wavelength. The fast tunable laser used
reinsertion. in our experiment was a GCSR laser [9] that can be tuned
SCM label addressing offers the potential to extend thg a new wavelength in under 12 ns. The laser was switched
success of WDM at the transmission level by layering thgetween the four different wavelengths by varying the coupler
rOUting information on a low bit-rate modulated out of ban@urrent alone. The average Output power of each of the four
subcarrier that can be recovered with low cost electroniGgavelengths was 0 dBm and the power variation between the
Recovery of RF subcarriers and direct detection of labels fisur wavelengths was less than 1 dB. The laser output was
possible using MMIC'’s [5], a technology whose cost has begfiable with respect to the wavelength and the power for time
driven down by widespread use in wireless applications. In th@riods longer than a day. The wavelength current tuning and
2-stage wavelength converter architecture, label swapping aifiput power were repeatable such that power deviations at the

label regeneration is performed using a previously reporteg@tput of the filter due to wavelength drift were not observed
technique to remove and replace SCM headers without retugver the length of our experiment. The sidemode suppression

ing the baseband to the electronic domain [6]. This architectuifider switching conditions for every wavelength was greater
also minimizes fiber dispersion induced power penalties fgfan 30 dB.

double-sideband modulated SCM signals because the label ifh the XGM stage, the low pass frequency response of
regenerated at every hop. wavelength conversion in an SOA [6] transfers the base-
A schematic of the AOLS module is shown in Fig. 2. Arband frequencies and suppresses the SCM label; therefore the
OSCM packet transmitter [6] generategd packets consisting OSCM label is removed. The XGM-WC converts incoming
of a 150 Mb/s label on an RZ coded, ASK modulated 16-GH&DM packets to a fixed internal wavelength,() that is
subcarrier. In our experiment the packets were synchronopassed to the next stage using a fixed frequency optical filter
therefore guardbands were not used. In practice, guardbangd sets the optical power operating point for the IWC for
will be required between the packets to accommodate for thegiven bias current. One arm of an InGaAsP IWC [8] is
switching time of the tunable laser and the response time infected with the optically filtered output of the XGM-WC.
the subcarrier receiver. Labels consist of a 16-bit preambifhe output of a rapidly tunable four-section GCSR laser
an 84-bit tag, and a 4-bit framing sequence. The payloadnsmitter [9] is injected to both arms of the IWC. The XGM
is an NRZ coded 2.5-Gb/s PRBS. The 16-GHz subcarrigtage inverts the payload bits while the IWC, operated in the
supports payload bit rates up to 10 Gb/s. Label clock and dataerting mode, results in a final output that has the same
are recovered on a packet-by-packet basis following a 1Q86larity as the input. Two header reinsertion configurations are
fiber tap, an EDFA, and an SCM direct-detection receivepossible as shown in Fig. 2. In the first approach, the injection
The SCM receiver utilizes a fast Schottky barrier diode farurrent of the nonoptically injected SOA is directly modulated
envelope detection. A SAW filter is used to recover the tagith the new SCM tag. In the second approach, the GCSR
clock for each packet as shown in Fig. 3, with a fixed digitdaser is externally modulated with the new SCM tag. In this
delay required to realign data and clock. More advanced buesperiment we utilized the latter approach due to the limited
mode detector techniques that employ fast clock and daectrical bandwidth in the wirebonds to the IWC.
recovery [11] are currently under investigation in our lab. A Results of the AOLS experiment are shown in Fig. 4. The
tag switching processor is needed to perform serial-to-paral®eb-Gb/s packets are forwarded among four output wave-
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Fig. 4. Trace of the reinserted subcarrier label and the converted payload
for four different wavelengths.
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= The floor obtained is a result of saturation effects in the RF
! : ‘ section of the receiver.
. ! In summary, we have demonstrated for the first time WDM
IP all-optical label swapping with wavelength conversion and
subcarrier multiplexed addressing. Switching over four wave-
lengths that span 16 nm was demonstrated with noninverting
wavelength conversion of 2.5-Gb/s payloads and burst mode
{ . recovery of tag labels. In principle the wavelength converter
I = i T o and the GCSR laser can span 60-80 nm, thus 75-80 channels
: 100-GHz channel spacing can be effectively managed by
——— this architecture. The scalability issues are currently being
investigated in our lab.
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Fig. 5. BER of the wavelength converted payload with new label for four
different wavelengths. The maximum power penalty is 4.3 dB.
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Fig. 6. BER of the reinserted subcarrier label. The floor is obtained due t¢8]
saturation effects in the RF section of the receiver.

lengths. The channels were then individual received using
a tunable optical filter. A broadband receiver can also be
used to receive the different packets. The pedestal is due
to extinction ratio sacrificed in order to cover the complete
wavelength range of the tunable laser using the current IWIZ0]
We measured the transmission BER for the label-switched
payload with an observed maximum of 4.3-dB power penalty
as shown in Fig. 5. The power penalty is expected to decredsd
when optimally designed wavelength converters are used. The
measured BER of the recovered SCM label is shown in Fig. 6.

Ericsson, Sweden, for providing the IWC.
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