Broadband Rate-Equation Model including Many-Body Gain for WDM Traveling-Wave SOAs

V. Lal, W. Donat, A. Tauke Pedretti, L. Coldren, D. Blumenthal, and J. Piprek

Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106, U.S.A.

Abstract – We present a traveling-wave rate-equation model for wavelength-division multiplexing (WDM) semiconductor optical amplifiers (SOA) which utilizes many-body gain spectra. Good agreement with measurements is obtained across a broad wavelength range.

I. INTRODUCTION

Broadband semiconductor optical amplifiers (SOAs) are of great interest for wavelength-division multiplexing (WDM) and other multi-wavelength optical communication systems. The wavelength sensitivity of the device performance is of special concern, in our case for a wavelength range from 1525 nm to 1565 nm.

We here present an SOA rate-equation model which gives good agreement with measured device characteristics over a broad wavelength range due to the inclusion of many-body gain spectra. To demonstrate and validate this model, we investigate ridge-waveguide devices with an InGaAsP multi-quantum-well (MQW) active region grown on top of the waveguide layer. Our example SOA is 400 µm long and the waveguide ridge is 3 µm wide. More device details are given elsewhere.

II. GAIN MODEL

The accurate modeling of quantum well properties, in particular the optical gain is prerequisite for a realistic simulation of broadband devices. We initially employed the free-carrier gain model by Chinn et al. including 4x4 kp band structure calculations and a Lorentz energy broadening function. However, this approach did not give consistent agreement with experimental results, especially the measured wavelength dependence was not reproduced correctly. This becomes clear from comparison to the measured photoluminescence spectrum (Fig. 1) which exhibits discrepancies on both sides of the spectrum. The many-body gain theory by Koch et al. provides a much better agreement across the entire spectrum (solid curve in Fig. 1). Gain spectra from both models are shown in Fig. 2 which reveal substantial differences not only in shape but also in magnitude. In strong contrast to the free-carrier model, the many-body spectra indicate relatively uniform SOA performance across the C-band, which is in agreement with our experimental observations.

III. RATE-EQUATION MODEL

We employ a traditional rate-equation model for the quantum well carrier density and the photon density including non-radiative and spontaneous recombination. As the carrier and photon densities are longitudinally non-uniform in our traveling-wave SOA, we break the active region into a number of much smaller sections, within which we can approximate the densities as uniform. The optical gain in each section is a function of the local carrier density and the signal wavelength.

Fig. 1 Photoluminescence spectrum (dots: measured, dashed: free carrier model, solid: many-body model).

Fig. 2. Calculated gain spectra at two different carrier densities (dashed: free carrier model, solid: many-body model).
It is extracted from many-body gain tables purchased from Nonlinear Control Strategies (Tucson, AZ) that have been adjusted to our photoluminescence measurements as described elsewhere.8

The rate-equation model employs a number of material parameters which are critical to obtain good agreement with measurements. We assume typical values for the defect recombination lifetime (τSRH = 20 ns), the spontaneous emission coefficient (B = 0.8 \times 10^{-10} \text{ cm}^2/\text{s}), and the modal loss (αc = 10 \text{ cm}^{-1}). The injection efficiency ηi = 82% and the optical confinement factor Γ = 0.06 are extracted from an advanced device simulation.8 The only fit parameter used here is the Auger coefficient C = 2.4 \times 10^{-26} \text{ cm}^3/\text{s} which lies well within the range reported in the literature.9 Amplified spontaneous emission (ASE) effects are negligibly small.

IV. RESULTS

The fabricated device has a monolithically integrated photodetector at the output of the SOA, which was used to measure the output power.1 This allows us to measure the output power easily and accurately, eliminating any coupling losses that would result if the detector was off-chip. Figure 3 shows the measured SOA gain (dots) as a function of wavelength along with the simulation result (line). The input power P_{in} is kept low to avoid saturation effects. The simulation is in good agreement with the measured data across a broad wavelength range. The deviation seen at the short-wavelength side may be attributed to slight inaccuracies in the calculated gain spectrum. The injection current density of j = 7.5 kA/cm² is sufficiently low to exclude self-heating effects and to assume room temperature in the simulation.

In summary, we have demonstrated that relatively simple rate-equation models for traveling-wave semiconductor optical amplifiers can deliver realistic performance characteristics across a broad wavelength range by employing an advanced many-body model for the optical gain spectrum.

ACKNOWLEDGEMENT

This work was sponsored in part by the Semiconductor Research Corporation and by the Intel Corporation.

REFERENCES

7. www.nlcstr.com